
i

COLLABORATION BETWEEN UNMANNED AERIAL

AND GROUND VEHICLES FOR SEARCH AND RESCUE

MISSIONS

A PROJECT REPORT

Submitted by

RAMANAN SEKAR (312214105077)

SAI SHANKAR N (312214105082)

SHIVA SHANKAR B (312214105091)

in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

in

ELECTRICAL AND ELECTRONICS ENGINEERING

SSN COLLEGE OF ENGINEERING, KALAVAKKAM

ANNA UNIVERSITY:: CHENNAI 600 025

APRIL 2018

ii

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “COLLABORATION BETWEEN

UNMANNED AERIAL AND GROUND VEHICLES FOR SEARCH AND

RESCUE MISSIONS” is the bonafide work of RAMANAN SEKAR

(312214105077), SAI SHANKAR N (312214105082), and SHIVA SHANKAR

B (312214105091) who carried out the research under my supervision.

SIGNATURE SIGNATURE

DR.V.KAMARAJ DR. RANGANATH MUTHU

HEAD OF THE DEPARTMENT SUPERVISOR

Professor Professor

Electrical and Electronics Engineering Electrical and Electronics Engineering

SSN College of Engineering SSN College of Engineering

Kalavakkam-603110 Kalavakkam-603110

iii

VIVA –VOCE EXAMINATION

The Viva-voce examination for the project work, “COLLABORATION

BETWEEN UNMANNED AERIAL AND GROUND VEHICLES FOR

SEARCH AND RESCUE MISSIONS” submitted by RAMANAN SEKAR

(312214105077), SAI SHANKAR N (312214105082), and SHIVA SHANKAR

B (312214105091) and held on ------------------------

Internal Examiner External Examiner

iv

ACKNOWLEDGEMENTS

We are grateful to our Project Supervisor, Dr. Ranganath Muthu, Professor,

Department of Electrical and Electronics Engineering for his expert guidance and

constant support throughout the project.

We express our sincere gratitude to Dr.S.Salivahanan, Principal, SSN College of

Engineering, Dr. V. Kamaraj, Professor and Head, Department of Electrical and

Electronics Engineering, and the Management for providing us with the

encouragement to complete this project.

We are indebted to all the faculty members and assistants of the Electrical and

Electronics Engineering Department for their invaluable assistance.

RAMANAN SEKAR

SAI SHANKAR N

SHIVA SHANKAR B

v

ABSTRACT

Autonomous robot missions in unknown environments are challenging. In many

cases, the systems involved are unable to use a priori information about the scene.

This is especially true in disaster response scenarios, where existing maps are now

out of date. GPS-denied areas are another concern, especially when the involved

systems are tasked with navigating a global path planned by a base station. Scene

understanding via robots’ perception data can greatly assist in overcoming these

challenges. This project work is an implementation of a collaborative robot system

that help overcome these challenges, where there is a focus on the application of

autonomously searching and rescuing people in disaster zones such as earthquakes

with unmanned aerial vehicles (UAV) and unmanned ground vehicles (UGV) in

unknown and unstructured environments. The approach proposed here is motivated

by the need to deliver a fast, unmanned response in a previously unexplored

environment using a collaborative robot team. We address the problem of

exploration of an unknown environment by a flying robot using its onboard sensors

from an overhead perspective. This information will be processed using traditional

computer vision techniques to yield a binary occupancy grid, which will be used

for motion and mission planning for the ground vehicle. The ground vehicle will

perform its duties in such a way that prioritizes minimum time and the service of

maximum number of people.

vi

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF SYMBOLS xiv

 1 INTRODUCTION 1

 1.1 MOTIVATION 1

 1.2 DETAILED DESCRIPTION 2

 1.3 OBJECTIVES 3

 1.4 ORGANIZATION OF THE REPORT 4

 2 LITERATURE REVIEW 6

2.1 BRIEF OVERVIEW 6

2.2 STATE-OF-THE-ART 10

2.3 SUMMARY 11

3 COMPUTER VISION 12

3.1 INTRODUCTION 12

3.2 WHAT IS COMPUTER VISION? 12

vii

CHAPTER NO. TITLE PAGE NO.

3.3 GEOMETRIC TRANSFORMS 13

 3.4 RANSAC 15

 3.5 SCALE INVARIANT

 FEATURE TRANSFORM (SIFT) 16

3.5.1 SIFT for Panoramic Stitching

3.5.2 SIFT for Object Detection

 3.6 VIOLA JONES OBJECT AND

 FACE DETECTION 23

 3.7 SUMMARY 24

 4 MOTION PLANNING 25

 4.1 INTRODUCTION 25

 4.2 WHAT IS MOTION PLANNING? 25

 4.3 DIJKSTRA’S ALGORITHM 27

 4.4 PROBABILISTIC ROADMAP 29

4.4.1 Probabilistic Roadmap VS. Dijkstra’s

 algorithm

 4.5 MISSION PLANNING 32

viii

CHAPTER NO. TITLE PAGE NO.

 4.6 SUMMARY 32

5 HARDWARE 33

 5.1 INTRODUCTION 33

 5.2 MOTOR CONTROLLER 34

 5.3 WiFi MODULE 35

 5.4 THE ThingSpeak PLATFORM 37

 5.5 OBJECT DETECTION MODULES 38

5.5.1 Camera Module

5.5.2 Ultrasonic Sensor Module

 5.6 POWER SOURCES 40

 5.7 SUMMARY 40

6 IMPLEMENTATION AND RESULTS 41

 6.1 INTRODUCTION 41

 6.2 SAMPLING OF THE AERIAL

 VEHICLE’S VIDEO 41

 6.3 COMPUTER VISION 42

 6.4 PATH, MISSION AND RE-PLANNING 45

 6.5 SUMMARY 48

ix

CHAPTER NO. TITLE PAGE NO.

7 CONCLUSION AND FUTURE WORK 49

 REFERENCES 51

x

LIST OF TABLES

TABLE NO. TITLE PAGE NO.

5.1 List of basic AT commands 36

 5.2 Commands related to establishing the WiFi settings 36

 5.3 Related AT commands with respect to ESP8266 37

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE NO.

1.1 An air-ground vehicle system,

 from Butzke et al, (2016) 3

 2.1 Overview of the setup of Mueggler et al, (2014) 7

 2.2 Overview of the setup of Michael et al, (2012) 9

 2.3 Mapping of the earthquake hit area,

 by Michael et al, (2012) 10

 2.4 Setup of of Delmerico et al, (2016) 11

 3.1 Geometric Transforms from Szeliski et al, (2010) 14

 3.2 Features obtained from two given scenes 18

 3.3 Features match with outliers 19

 3.4 Feature match with inliers 19

 3.5 Final Panorama 20

 3.6 Detected Debri Features 21

3.7 Detected Map Features 21

3.8 Matched points with outliers 22

xii

FIGURE NO. TITLE PAGE NO.

3.9 Matched points with inliers 22

3.10 Detected objects 22

3.11 Detected Faces using Viola Jones algorithm 24

4.1 Configuration spaces and occupancy grids 26

 4.2 An example of an inverted binary occupancy grid 27

 4.3 Output of Dijkstra’s algorithm 29

 4.4 Output of PRM on given binary occupancy grid 31

 5.1 2-by-2 powered wheels 33

 5.2 Three wheeled vehicle 34

 5.3 Quad Motor Driver Shield 34

 5.4 Hardware connection between Esp8266 and MEGA2560 35

 5.5 Data transfer via ThingSpeak 38

 5.6 Hardware connection between camera module and

Raspberry Pi board 39

 5.7 Hardware connection between HCSR04 and MEGA2560 40

 6.1 Our setup 41

 6.2 DJI PHANTOM 3 42

6.3 Some set of Sampled Images from the video 43

xiii

FIGURE NO. TITLE PAGE NO.

6.4 A section that was stitched 44

6.5 Binary occupancy grid 44

6.6 Four wheeled ground robot 45

6.7 Point to point path-planning 47

 6.8 Mission planning 48

xiv

 LIST OF SYMBOLS

 SYMBOL DESCRIPTION

 R Rotation Operation

 t Translation Operation

 s Scale Factor

 x Point in homogeneous coordinates

 x Point in transformed coordinates

1

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

In disaster environments or search and rescue scenarios, time is a critical factor

in the success of the first responders, as shown by Murphy R.R (2014). These are

also scenarios where those same rescue personnel must often put themselves in

dangerous situations in order to provide aid. Unmanned systems have the possibility

to provide new capabilities for these operators, as well as increase their safety and

decrease the response time in delivering that aid. However, one challenge for these

scenarios is that the environment may have been altered by the disaster (e.g., an

earthquake or a mudslide), potentially invalidating any prior information about the

environment, such as maps from aerial surveys or satellite imagery. Consequently,

robotic systems that can benefit first responders must be capable of gathering and

using data on demand, without reliance on a priori maps.

Since 2001, rescue robots have been deployed for disaster response. For

example, after the earthquake and tsunami in Fukushima, Japan in 2011, ground

robots were utilized to explore the situation in the contaminated reactor building as

shown by Nagatani et. al (2013). In all previous disaster response missions, the

robots were remote-controlled by trained professionals. Three operators per robot

were required on average and the executed missions took very long. Since time is

the most critical factor in rescue missions, the proposed idea is to deploy teams of

heterogeneous robots, namely ground and aerial robots, to speed up disaster

response. Their sense-act capabilities are complementary: ground robots can carry

high payloads and manipulators. However, their field of view is limited and they can

2

be blocked by obstacles on the ground. Aerial robots, in contrast, can overcome

obstacles with ease and can provide a bird’s-eye view, which is ideal for mapping

and monitoring tasks. To reduce the number of required operators and speed up their

mission, the robots must expose a good level of autonomy. Instead of sending low-

level commands, they must be able to autonomously execute high-level tasks such

as “grasp that object” or “fly to location X”. This allows the operator to focus on the

mission instead of low-level robot details. For reliable local navigation, robots must

rely only on their onboard sensors, since the communication infrastructure is likely

to be affected during disaster situations. Our passion for robotics, control theory and

computer vision, and our desire to work on a small-scale search and rescue setup

using collaborative robotics is the main motivation for pursuing this project.

1.2 DETAILED DESCRIPTION

Autonomous unmanned systems have the potential to provide safer and more

efficient solutions to problems that currently rely on manned missions. Relevant

applications include disaster response, search and rescue, public transportation,

infrastructure health monitoring and precision agriculture. The application focused

on for this project work is the autonomous search and rescue missions using

collaborative robots. For these purposes, one needs advanced perception and

planning capabilities with respect to the performances of the robots. Specifically, we

focus on unmanned aerial and ground vehicles for the search and rescue scenario.

We are interested in exploring the possibility of leveraging an autonomous

quadrotor in such environments through field experiments that focus on cooperative

mapping and planning using both ground and aerial robots. Aerial robots offer

several advantages over ground robots, including the ability to manoeuvre through

complex three-dimensional (3D) environments and gather data from vantages

3

inaccessible to ground robots. Further, quadrotors are able to hover in place, making

them well-suited for observation and human-guided or autonomous inspection.

However, aerial robots also have several limitations that reduce their applicability in

disaster scenarios. Such limitations include the need for wireless communication and

a limited on-board power supply that restricts the platform’s payload capacity and

flying time.

Understanding the capabilities that each system requires and the goals that are to

be accomplished at the current state, our project will be structured to provide a very

simple reconstruction of a disaster setup, which in our case, will be the earthquake,

and to use a collaborative robotics scheme using UAVs and UGVs. A typical setup

is shown in Fig1.1. The objectives that are to be completed, thus satisfying the goals

that were stated earlier, are given as objectives in Section 1.3.

Fig.1.1 An air-ground vehicle system, from Butzke et. al (2016).

1.3 OBJECTIVES:

• To use a UAV to sequentially map the given area that needs to be surveyed

by flying over the area through the specific waypoints.

4

• To use the video footage obtained from the UAV and sample the footage

strategically and obtain images to be stitched

• Use a suitable computer vision technique to stitch the images

• Use the stitched images to identify and localize obstacles and keypoints where

people are stuck, and identify the number of people

• Transform this information into a binary occupancy grid for motion planning

of the UGV

• Use a suitable motion planning strategy for the UGV to execute

• Plan a mission in such a way that the total time for the execution of the mission

is minimized, taking into account distances to be travelled and number of

people to save.

1.4 ORGANIZATION OF THE REPORT

 CHAPTER 2 gives a brief overview of the major milestones in the systems

development and performance improvements in these collaborative systems,

be it in air-air, air-ground, or ground-ground. This chapter also provides an

overview of the current state-of-the-art in the use of unmanned aerial and

ground vehicles for search and rescue operations.

 CHAPTER 3 is dedicated to the explanation of the entire computer vision

system that is the backbone of the entire process. This chapter gives a very

brief introduction to what computer vision is, and delves into the details of

transformations, filters, RANSAC, scale-invariant feature transforms, their

application for object detection and panoramic stitching, and finally, the Viola

Jones face (and object) detection algorithm.

 CHAPTER 4 is dedicated to the study of motion planning algorithms. This

chapter covers the combinatorial and sampling-based search algorithms and

5

focuses on why the sampling techniques are much better than the

combinatorial techniques. This chapter finally focuses on our own mission

planning algorithm that we developed, which would prioritize distances and

the density of populations to minimize the overall time for the mission.

 CHAPTER 5 gives detailed descriptions of the hardware that is used in the

project, all the way from the unmanned ground vehicle build using the

Arduino controllers, to the use of the Raspberry Pi 3 for wireless streaming of

camera footage.

 CHAPTER 6 gives the hardware implementation of the project on a large

area, by setting up a mock disaster zone setup. The results are discussed in

this chapter.

 CHAPTER 7 is a reflection on the work that was done, and discusses the

successes and obstacles that were faced during the completion of the project,

and discusses what could be done in the future to improve on this work.

6

CHAPTER 2

LITERATURE REVIEW

2.1 A BRIEF OVERVIEW OF PREVIOUS WORK

 The main research paper that our project work is based off is from the Robotics

and Perception group at ETH Zurich, headed by Professor Davide Scaramuzza. The

paper that his group published, namely the work by Mueggler et. al (2014), inspired

us the most. They demonstrate the fully autonomous collaboration of an aerial and a

ground robot in a mock-up disaster scenario. Within this collaboration, they make

use of the individual capabilities and strengths of both robots. The aerial robot first

maps an area of interest, then it computes the fastest mission for the ground robot to

reach a spotted victim and deliver a first-aid kit. Such a mission includes driving and

removing obstacles in the way while being constantly monitored and commanded

by the aerial robot. Their mission planning algorithm distinguishes between movable

and fixed obstacles and considers both the time for driving and removing obstacles.

The entire mission is executed without any human interaction once the aerial robot

is launched and requires a minimal amount of communication between the robots.

They describe both the hardware and software of their system and detail their

mission-planning algorithm. They present exhaustive results of both simulation and

real experiments. Their system was successfully demonstrated more than 20 times

at a trade fair. Their setup is shown in Fig.2.1.

 The collaboration between autonomous unmanned systems has been studied for

a large number of applications. These unmanned systems include autonomous

underwater vehicles (AUV), unmanned surface vehicles (USV), UAVs, and UGVs.

Some examples of the applications of these unmanned systems are search and rescue

operations, post-disaster surveying, target localization and tracking, and precision

7

agriculture monitoring. Previous works have focused on the collaboration between

multiple UAV (Yu et al, 2013), multiple UGV (Bruggemann et al 2012), the

collaboration between UAV and UGV (Duan, 2014), and much more.

Fig.2.1 Overview of the setup of Mueggler et. al (2014)

Reference (Garz’on et al, 2015) presents a solution for multiple UGV to

perform signal searching tasks in large outdoor scenarios. They propose different

path planning strategies for coverage, which depend on the size and shape of the

field. For the topic of UAV-UGV collaboration, (Totekar et al, 2013) studied the

problem of coordinating UAV and UGV for precision agriculture, where they found

energy efficient ways to visit areas with misclassified nitrogen levels. UAV and

UGV have also been used in a collaborative manner to perform target localization

Butzke et. al (2016). In (Mueggler et. al ,2014) a mock-up disaster scenario was

setup, where a UAV maps the area and then computes the fastest mission for a UGV

to reach the destination and deliver a first-aid kit. Cooperative environment mapping

8

(Michael et al, 2012) and surveillance (Saska et al, 2012) have also been studied.

While our experiments are fairly specific, and therefore difficult to compare to

existing approaches, Schneider et al (2015) discuss how EURATHLON and ELROB

have provided a way of standardizing and benchmarking the evaluation of methods

in outdoor robotics through competition. Teams at these competitions build

impressive systems that are capable of executing missions in real-time for important

tasks such as search and rescue. Others have used overhead imagery to improve

UGV path planning capabilities. In (Sofman et al, 2006), a self-supervised online

learning algorithm is used on a UGV to learn a model that integrates information

about the current terrain and overhead imagery that is then used to predict traversal

costs at other regions in the overhead map. These predicted traversal costs were then

used to perform path planning. While many of these works demonstrate successful

collaboration between UAV and UGV, we try to focus more on using semantic

segmentation for scene understanding in a real-world search task by training on a

dataset of imagery that is annotated with semantic categories. As more images are

captured and annotated by low-flying aircraft, we believe it will be important to

integrate existing models with online learning algorithms, such as the one presented

in (Sofman et al, 2006). These models will be able to provide valuable context to a

UGV during tasks such as radiation search, as existing maps (e.g. satellite) may be

too old to capture important information about the scene.

The really specific and successful application to a real earthquake hit zone of

the collaborative robotics idea came from (Michael et al, 2012), whose setup is

shown in Fig.2.2. They report results from field experiments conducted with a team

of ground and aerial robots engaged in the mapping of an earthquake-damaged

building. We focus on the investigation of the feasibility of deploying aerial robots,

specifically a quadrotor, into disaster scenarios where a building may be critically

9

damaged but is still accessible to robots and humans for experimental purposes. The

experimental environment covered the top three floors of a building on the campus

of Tohoku University in Sendai, Japan. Michael et al (2012) report results from field

experiments conducted with a team of ground and aerial robots engaged in the

collaborative mapping of an earthquake-damaged building. The goal of the

experimental exercise is the generation of three-dimensional maps that capture the

layout of a multi-floor environment. Michael et al (2012) provide details of the

approach to the collaborative mapping and report results from the experiments in the

form of maps generated by the individual robots and as a team. The first platform is

a ground robot equipped with an onboard sensing suite that enables the generation

of dense 3D maps. The vehicle is teleoperated through the multifloor environment

while simultaneously collecting sensor data. After the operators identify locations in

the environment that are inaccessible to the ground platform, a second ground

platform equipped with an automated helipad is teleoperated to these locations and

carries a quadrotor robot equipped with onboard sensing that is able to remotely open

and close the helipad and autonomously take off and land from the helipad. Their

map is shown in Fig.2.3.

Fig.2.2 Overview of setup of Michael et al (2012)

10

Fig.2.3 Mapping of the earthquake hit area, by Michael et al (2012)

2.2 STATE-OF-THE-ART

The state-of-the-art for collaborative robotics for search and rescue mission,

once again comes from the Robotics and Perception group at ETH Zurich. In

(Delmerico et al, 2016), they address the problem of planning a path for a ground

robot through unknown terrain, using observations from a flying robot. In search and

rescue missions, which are their target scenarios, the time from arrival at the disaster

site to the delivery of aid is critically important. Previous works required exhaustive

exploration before path planning, which is time-consuming but eventually leads to

an optimal path for the ground robot. Instead, they propose active exploration of the

environment, where the flying robot chooses regions to map in a way that optimizes

the overall response time of the system, which is the combined time for the air and

ground robots to execute their missions. In their approach, we estimate terrain

classes throughout their terrain map, and we also add elevation information in areas

where the active exploration algorithm has chosen to perform 3D reconstruction.

This terrain information is used to estimate feasible and efficient paths for the ground

robot. By exploring the environment actively, they achieve superior response times

compared to both exhaustive and greedy exploration strategies. they demonstrate the

11

performance and capabilities of the proposed system in simulated and real-world

outdoor experiments. This is the first work to address ground robot path planning

using active aerial exploration. Their setup is shown in Fig.2.4.

Fig.2.4 Setup of Delmerico et al, (2016)

2.3 SUMMARY

While the state-of-the-art has been established by (Delmerico et al, 2016), we will

only focus on replicating most of the results of (Mueggler et al, 2014), owing to our

limited time and resources. The rest of the report will focus on the relevant theory

and the experimental implementations.

12

CHAPTER 3

COMPUTER VISION

3.1 INTRODUCTION

The reference (Szeliski, 2010) is a fantastic textbook on the computer vision and was

our primary reference material with respect to the subject, in addition to the research

papers that are published. This chapter is dedicated to the explanation of the entire

computer vision system that is the backbone of the entire process. This chapter gives

a very brief introduction to what computer vision is, and delves into the details of

transformations, filters, RANSAC, scale-invariant feature transforms, their

application for object detection and panoramic stitching, and finally, the Viola Jones

face (and object) detection algorithm.

3.2 WHAT IS COMPUTER VISION?

As humans, we perceive the three-dimensional structure of the world around us with

apparent ease. Think of how vivid the three-dimensional percept is when you look

at a vase of flowers sitting on the table next to you. You can tell the shape and

translucency of each petal through the subtle patterns of light and shading that play

across its surface and effortlessly segment each flower from the background of the

scene. Looking at a framed group portrait, you can easily count (and name) all of the

people in the picture and even guess at their emotions from their facial appearance.

Perceptual psychologists have spent decades trying to understand how the visual

system works and, even though they can devise optical illusions to tease apart some

of its principles, a complete solution to this puzzle remains elusive. Researchers in

computer vision have been developing, in parallel, mathematical techniques for

13

recovering the three-dimensional shape and appearance of objects in imagery. We

now have reliable techniques for accurately computing a partial 3D model of an

environment from thousands of partially overlapping photographs. Given a large

enough set of views of a particular object or facade, we can create accurate dense

3D surface models using stereo matching. We can track a person moving against a

complex background. We can even, with moderate success, attempt to find and name

all of the people in a photograph using a combination of face, clothing, and hair

detection and recognition. However, despite all of these advances, the goal of having

a computer interpret an image at the same level as a two-year old remains elusive.

Why is vision so difficult? In part, it is because vision is an inverse problem, in

which we seek to recover some unknowns given insufficient information to fully

specify the solution.

3.3 GEOMETRIC TRANSFORMS

A general image is represented with the help of pixels and intensities. Each pixel has

a specific intensity ranging from completely white to completely black, specified by

certain designated numbers, and an RGB code. These images can be viewed

differently from different angles and can be subjected to geometric transforms.

Common geometric transforms that we will be seeing in this report are discussed

here. We only discuss 2D transforms here. 2D translations can be written as

The rotation and translation operation is represented with ‘R’ and ‘t’ respectively,

and is given by the below equation

(3.1)

14

The similarity transform preserves the angles between lines, and is specified by a

scale factor ‘s’, and is given by the equation:

The affine transform preserves the parallel lines, and at the end of the transform,

parallel lines remain parallel. This is given by the equation

The visual representation of each of these transforms is shown below

Fig.3.1 Geometric Transforms from Szeliski et. al (2010)

(3.2)

(3.3)

(3.4)

(3.5)

15

3.4 RANSAC

The RANSAC algorithm is a learning technique to estimate parameters of a model

by random sampling of observed data. Given a dataset whose data elements contain

both inliers and outliers, RANSAC uses the voting scheme to find the optimal fitting

result. Data elements in the dataset are used to vote for one or multiple models. The

implementation of this voting scheme is based on two assumptions: that the noisy

features will not vote consistently for any single model (few outliers) and there are

enough features to agree on a good model (few missing data). The RANSAC

algorithm is essentially composed of two steps that are iteratively repeated:

1. In the first step, a sample subset containing minimal data items is randomly

selected from the input dataset. A fitting model and the corresponding model

parameters are computed using only the elements of this sample subset. The

cardinality of the sample subset is the smallest sufficient to determine the

model parameters.

2. In the second step, the algorithm checks which elements of the entire dataset

are consistent with the model instantiated by the estimated model parameters

obtained from the first step. A data element will be considered as an outlier if

it does not fit the fitting model instantiated by the set of estimated model

parameters within some error threshold that defines the maximum deviation

attributable to the effect of noise.

The set of inliers obtained for the fitting model is called consensus set. The

RANSAC algorithm will iteratively repeat the above two steps until the obtained

consensus set in certain iteration has enough inliers.

16

The input to the RANSAC algorithm is a set of observed data values, a way of fitting

some kind of model to the observations, and some confidence parameters. RANSAC

achieves its goal by repeating the following steps:

1. Select a random subset of the original data. Call this subset the hypothetical

inliers.

2. A model is fitted to the set of hypothetical inliers.

3. All other data are then tested against the fitted model. Those points that fit the

estimated model well, according to some model-specific loss function, are

considered as part of the consensus set.

4. The estimated model is reasonably good if sufficiently many points have been

classified as part of the consensus set.

5. Afterwards, the model may be improved by re-estimating it using all members

of the consensus set.

This procedure is repeated a fixed number of times, each time producing either a

model which is rejected because too few points are part of the consensus set, or a

refined model together with a corresponding consensus set size. In the latter case,

we keep the refined model if its consensus set is larger than the previously saved

model.

3.5 SCALE INVARIANT FEATURE TRANSFORM (SIFT)

The seminal paper on SIFT was given by Davide Lowe, in (Lowe, 2004). For any

object in an image, interesting points on the object can be extracted to provide a

"feature description" of the object. This description, extracted from a training image,

can then be used to identify the object when attempting to locate the object in a test

image containing many other objects. To perform reliable recognition, it is important

https://en.wikipedia.org/wiki/Loss_function

17

that the features extracted from the training image be detectable even under changes

in image scale, noise and illumination. Such points usually lie on high-contrast

regions of the image, such as object edges.

Another important characteristic of these features is that the relative positions

between them in the original scene shouldn't change from one image to another. For

example, if only the four corners of a door were used as features, they would work

regardless of the door's position; but if points in the frame were also used, the

recognition would fail if the door is opened or closed. Similarly, features located in

articulated or flexible objects would typically not work if any change in their internal

geometry happens between two images in the set being processed. However, in

practice SIFT detects and uses a much larger number of features from the images,

which reduces the contribution of the errors caused by these local variations in the

average error of all feature matching errors.

SIFT can robustly identify objects even among clutter and under partial occlusion,

because the SIFT feature descriptor is invariant to uniform scaling, orientation,

illumination changes, and partially invariant to affine distortion. This section

summarizes the original SIFT algorithm and mentions a few competing techniques

available for object recognition under clutter and partial occlusion.

3.5.1 SIFT for Panoramic Stitching

From (Lowe and Brown, 2007), SIFT feature matching can be used in image

stitching for fully automated panorama reconstruction from non-panoramic images.

The SIFT features extracted from the input images are matched against each other

to find k nearest-neighbours for each feature. These correspondences are then used

to find m candidate matching images for each image. Transformations between pairs

https://en.wikipedia.org/wiki/Scaling_(geometry)
https://en.wikipedia.org/wiki/Orientation_(geometry)
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Image_stitching
https://en.wikipedia.org/wiki/Image_stitching
https://en.wikipedia.org/wiki/Panorama

18

of images are then computed using RANSAC and a probabilistic model is used for

verification. Because there is no restriction on the input images, graph search is

applied to find connected components of image matches such that each connected

component will correspond to a panorama. Finally for each connected component

Bundle adjustment is performed to solve for joint camera parameters, and the

panorama is rendered using multi-band blending. Because of the SIFT-inspired

object recognition approach to panorama stitching, the resulting system is insensitive

to the ordering, orientation, scale and illumination of the images. The input images

can contain multiple panoramas and noise images (some of which may not even be

part of the composite image), and panoramic sequences are recognized and rendered

as output. The outputs are shown from Fig.3.2-3.5.

Fig.3.2 Features obtained from two given scenes

https://en.wikipedia.org/wiki/RANSAC
https://en.wikipedia.org/wiki/Bundle_adjustment
https://en.wikipedia.org/w/index.php?title=Multi-band_blending&action=edit&redlink=1

19

Fig.3.3 Feature match with outliers

Fig.3.4 Feature match with Inliers

20

Fig.3.5 Final Panorama

3.5.2 SIFT for Object Detection

Given SIFT's ability to find distinctive keypoints that are invariant to location, scale

and rotation, and robust to affine transformations (changes in scale, rotation, shear,

and position) and changes in illumination, they are usable for object recognition. The

steps are given below.

 First, SIFT features are obtained from the input image using the algorithm

described above.

 These features are matched to the SIFT feature database obtained from the

training images. This feature matching is done through a Euclidean-distance

based nearest neighbor approach.

 Although the distance ratio test described above discards many of the false

matches arising from background clutter, we still have matches that belong to

different objects. Therefore, to increase robustness to object identification, we

want to cluster those features that belong to the same object and reject the matches

that are left out in the clustering process. This is done using the RANSAC. This

https://en.wikipedia.org/wiki/Affine_transformations
https://en.wikipedia.org/wiki/Linear_scale
https://en.wikipedia.org/wiki/Rotation
https://en.wikipedia.org/wiki/Shear_mapping
https://en.wikipedia.org/wiki/Hough_transform

21

Fig.3.6 Detected debri features

Fig.3.7 Detected map features

22

Fig.3.8 Matched points with outliers

Fig.3.9 Matched points with Inliers

Fig.3.10 Detected Objects

23

 will identify clusters of features that vote for the same object pose. When clusters

of features are found to vote for the same pose of an object, the probability of the

interpretation being correct is much higher than for any single feature. Each

keypoint votes for the set of object poses that are consistent with the keypoint's

location, scale, and orientation. Bins that accumulate at least 3 votes are identified

as candidate object/pose matches.

 For each candidate cluster, a least-squares solution for the best estimated affine

projection parameters relating the training image to the input image is obtained.

If the projection of a keypoint through these parameters lies within half the error

range that was used for the parameters in the RANSAC bins, the keypoint match

is kept. If fewer than 3 points remain after discarding outliers for a bin, then the

object match is rejected. The least-squares fitting is repeated until no more

rejections take place. This works better for planar surface recognition than 3D

object recognition since the affine model is no longer accurate for 3D objects.

SIFT features can essentially be applied to any task that requires identification of

matching locations between images. The outputs for our code, which was written on

MATLAB, is given below, Fig.3.6-3.10. The procedure is discussed in (Lowe,

2004).

3.6 VIOLA JONES OBJECT AND FACE DETECTION

The Viola–Jones object detection framework is the first object detection framework

to provide competitive object detection rates in real-time proposed in 2001 by Paul

Viola and Michael Jones, in (Viola and Jones, 2001). Although it can be trained to

detect a variety of object classes, it was motivated primarily by the problem of face

detection. A sample output of the face detection is shown in Fig.3.11.

https://en.wikipedia.org/wiki/Object_detection
https://en.wikipedia.org/w/index.php?title=Paul_Viola&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Paul_Viola&action=edit&redlink=1
https://en.wikipedia.org/wiki/Face_detection
https://en.wikipedia.org/wiki/Face_detection

24

The characteristics of Viola–Jones algorithm which make it a good detection

algorithm are:

 Robust – very high detection rate & very low false-positive rate always.

 Real time – For practical applications at least 2 frames per second must be

processed.

 Face detection only - The goal is to distinguish faces from non-faces (detection

is the first step in the recognition process).

The algorithm has four stages: Haar Feature Selection, Creating an Integral Image,

Adaboost Training, Cascading Classifiers.

Fig.3.11 Detected Faces using Viola Jones algorithm

3.7 SUMMARY

This chapter discussed the various computer vision algorithms that we will be using

in this project work, the reference of which can be found in the textbook (Szeliski,

2010).

25

CHAPTER 4

MOTION PLANNING

4.1 INTRODUCTION

The defining reference for understanding all things motion planning is (LaValle,

2006). This chapter is dedicated to the study of motion planning algorithms. This

chapter covers the combinatorial and sampling-based search algorithms and focuses

on why the sampling techniques are much better than the combinatorial techniques.

This chapter finally focuses on our own mission planning algorithm that we

developed, which would prioritize distances and the density of populations to

minimize the overall time for the mission.

4.2 WHAT IS MOTION PLANNING?

It is the process of breaking down a desired movement task into discrete motions

that satisfy movement constraints and possibly optimize some aspect of the

movement. For example, consider navigating a mobile robot inside a building to a

distant waypoint. It should execute this task while avoiding walls and not falling

down stairs. A motion planning algorithm would take a description of these tasks as

input and produce the speed and turning commands sent to the robot's wheels.

Motion planning algorithms might address robots with a larger number of joints, like

industrial manipulators, more complex tasks, like manipulation of objects, different

constraints, like a car that can only drive forward, and uncertainty, like imperfect

models of the environment or robot. Exact motion planning for high-dimensional

systems under complex constraints is computationally intractable. Potential-field

algorithms are efficient but fall prey to local minima. Sampling-based algorithms

https://en.wikipedia.org/wiki/Mobile_robot
https://en.wikipedia.org/wiki/Computational_complexity_theory#Intractability

26

avoid the problem of local minima and solve many problems quite quickly. They are

unable to determine that no path exists, but they have a probability of failure that

decreases to zero as more time is spent. Sampling-based algorithms are currently

considered state-of-the-art for motion planning in high-dimensional spaces and have

been applied to problems which have dozens or even hundreds of dimensions

(robotic manipulators, biological molecules, animated digital characters, and legged

robots). We will now look at grid-based search, an example of which is Dijkstra’s

Algorithm, and look at sampling-based search, an example of which is probabilistic

roadmap.

Fig.4.1 An example of motion planning on an occupancy grid, with the grey places

representing obstacles and white places representing free spaces.

Fig. 4.1 gives an example of motion planning. The configuration space is basically

represented as union of all possible configurations of the environment. Where the

robot cannot move in, both physically and higher dimensionally, are marked as one,

and where the robot can move, those spaces are called free spaces and are marked

as zero. This specific setup is called the binary occupancy grid. An example of an

inverted binary occupancy grid is shown below in Fig.4.2.

27

Fig.4.2 An example of an inverted binary occupancy grid.

4.3 DIJKSTRA’S ALGORITHM

Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in

a graph, which may represent, for example, road networks. This is a graph-based

search algorithm.

The algorithm exists in many variants; Dijkstra's original variant found the shortest

path between two nodes, but a more common variant fixes a single node as the

"source" node and finds shortest paths from the source to all other nodes in the graph,

producing a shortest-path tree.

For a given source node in the graph, the algorithm finds the shortest path between

that node and every other. It can also be used for finding the shortest paths from a

single node to a single destination node by stopping the algorithm once the shortest

path to the destination node has been determined.

Let the node at which we are starting be called the initial node. Let the distance of

node Y be the distance from the initial node to Y. Dijkstra's algorithm will assign

some initial distance values and will try to improve them step by step.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
https://en.wikipedia.org/wiki/Shortest-path_tree

28

1. Mark all nodes unvisited. Create a set of all the unvisited nodes called the

unvisited set.

2. Assign to every node a tentative distance value: set it to zero for our initial

node and to infinity for all other nodes. Set the initial node as current.

3. For the current node, consider all of its unvisited neighbors and calculate their

tentative distances through the current node. Compare the newly calculated

tentative distance to the current assigned value and assign the smaller one. For

example, if the current node A is marked with a distance of 6, and the edge

connecting it with a neighbor B has length 2, then the distance to B through A

will be 6 + 2 = 8. If B was previously marked with a distance greater than 8

then change it to 8. Otherwise, keep the current value.

4. When we are done considering all of the neighbors of the current node, mark

the current node as visited and remove it from the unvisited set. A visited node

will never be checked again.

5. Move to the next unvisited node with the smallest tentative distances and

repeat the above steps which check neighbors and mark visited.

6. If the destination node has been marked visited (when planning a route

between two specific nodes) or if the smallest tentative distance among the

nodes in the unvisited set is infinity (when planning a complete traversal;

occurs when there is no connection between the initial node and remaining

unvisited nodes), then stop. The algorithm has finished.

7. Otherwise, select the unvisited node that is marked with the smallest tentative

distance, set it as the new "current node", and go back to step 3.

When planning a route, it is actually not necessary to wait until the destination node

is "visited" as above: the algorithm can stop once the destination node has the

29

smallest tentative distance among all "unvisited" nodes (and thus could be selected

as the next "current").

For an example graph, the full output of the Dijkstra’s algorithm is shown below in

Fig. 4.3.

Fig.4.3 Output of Dijkstra’s algorithm on a sample graph

4.4 PROBABILISTIC ROADMAP

Probabilistic Roadmap, or PRM, is a motion planning algorithm that is not graph-

based but is sampling-based. The basic idea behind PRM is to take random samples

from the configuration space of the robot, testing them for whether they are in the

https://en.wikipedia.org/wiki/Configuration_space_(physics)

30

free space, and use a local planner to attempt to connect these configurations to other

nearby configurations. The starting and goal configurations are added in, and a graph

search algorithm is applied to the resulting graph to determine a path between the

starting and goal configurations.

The probabilistic roadmap planner consists of two phases: a construction and a query

phase. In the construction phase, a roadmap (graph) is built, approximating the

motions that can be made in the environment. First, a random configuration is

created. Then, it is connected to some neighbours, typically either the k nearest

neighbours or all neighbours less than some predetermined distance. Configurations

and connections are added to the graph until the roadmap is dense enough. In the

query phase, the start and goal configurations are connected to the graph, and the

path is obtained by a Dijkstra's shortest path query.

Given certain relatively weak conditions on the shape of the free space, PRM is

provably probabilistically complete, meaning that as the number of sampled points

increases without bound, the probability that the algorithm will not find a path if one

exists approaches zero. The rate of convergence depends on certain visibility

properties of the free space, where visibility is determined by the local planner.

Roughly, if each point can "see" a large fraction of the space, and also if a large

fraction of each subset of the space can "see" a large fraction of its complement, then

the planner will find a path quickly. An example run of the PRM algorithm on the

binary occupancy grid that was shown earlier is given in Fig. 4.4. The large number

of nodes represent the sampling that was done on the original configuration space,

and the network is connected using the k-nearest neighbours algorithm that was

described earlier. On the connected graph, Dijkstra’s algorithm is run to find the

shortest path between any two points, and the green lines that run from one end to

another represent that shortest path that was found.

https://en.wikipedia.org/wiki/Graph_search_algorithm
https://en.wikipedia.org/wiki/Graph_search_algorithm
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Dijkstra%27s_shortest_path

31

Fig.4.4 Output of PRM on the given binary occupancy grid

4.4.1 Probabilistic Roadmap VS. Dijkstra’s algorithm

For our purposes in this project, we have chosen a sampling-based search strategy

rather than an all-out graph-based search like Dijkstra’s algorithm. The

computational complexity of Dijkstra’s algorithm, or any graph-based search for that

matter, scales horribly as the number of nodes increases. This gets worse as the

number of dimensions increases, as the number of nodes exponentially increases.

The final result of the shortest path, although guaranteed through graph-based

searches, will take an extremely long time, and will not be preferable for any real-

time applications or any complex applications like manipulators and grasping. The

sampling-based searches, such as PRM, although cannot guarantee that a result will

be found every time the program is run, can guarantee that in a probabilistic sense,

there will always be a result to the problem. Furthermore, the main advantages of

the sampling-based methods, as opposed to the graph-based searches, is that they are

very fast in their results. Hence, we are trading accuracy and speed, and in our case,

32

both seem to favour the sampling-based search, and hence we have chosen to use

the PRM technique in our project.

4.5 MISSION PLANNING

Our own work in the process of motion planning lies with the mission planning

algorithm that we developed. Mission planning algorithms are those which are

combined with the path planning algorithms for a specific mission or purpose. This

mission could be to serve the maximum number of people in a restaurant, or to save

the maximum number of people, or to save energy while travelling, or to go around

places in minimum time, and so on. For our case, we have taken different population

densities located at different places and have given the constraint that the ground

robot should traverse all the nodes and come back to the initial starting position in

minimum time. We have also introduced the constraint that the ground vehicle

should reach places where the population density is high, thereby serving maximum

number of people before any mishap happens to the ground vehicle. To do this, we

developed a cost function that represents this problem. This will be a trade-off

between the distance to be travelled and the people to rescue, and one such example

case is that even though the distance might be the greatest, a specific population will

receive the highest priority if the number of people in that population group is the

highest. This cost function can be represented by an inverse relationship between the

distance and the number of people. For every possible permutation of the nodes

configuration, the cost function is evaluated. The configuration that the ground

vehicle will visit the nodes in is chosen in such a way that the cost function is a

minimum.

4.6 SUMMARY

This chapter discussed the main path planning algorithm that we will be using, and

also discussed our own modifications to it through mission planning algorithms.

33

CHAPTER 5

HARDWARE

5.1 INTRODUCTION

Wheeled robots are robots that navigate around the ground using motorized wheels

to propel themselves. This design is simpler than using treads or legs and by using

wheels they are easier to design, build, and program for movement in flat, not-so-

rugged terrain. They are also well controlled than other types of robots. Their

differential steering provides low cost and simplicity. Robots can have any number

of wheels, but three wheels are sufficient for static and dynamic balance. Additional

wheels can add to balance.

Our initial design for the ground vehicle had 2-by-2 powered (Fig 5.1) wheels

for tank-like movement. This kind of robot uses 2 pairs of powered wheels. Each

pair (connected by a line) turn in the same direction. The tricky part of this kind of

propulsion is getting all the wheels to turn with the same speed. If the wheels in a

pair are not running with the same speed, the slower one will slip (inefficient). If the

pairs do not run at the same speed the robot won't be able to drive straight.

Fig 5.1- 2-by-2 powered wheels

Hence for the purpose of accurate turning, the design has been changed to a three

wheeled vehicle in which two are differentially steered and one is freely rotating

34

(Fig 5.2). The centre of gravity in this type of robot has to lay inside the triangle

formed by the wheels. If too heavy of a mass is mounted to the side of the free

rotating wheel, the robot will tip over.

Fig 5.2 – Three wheeled vehicle

5.2 MOTOR CONTROLLER

The ground robot works on ARDUINO platform. The differentially steered wheels

are attached to motors that are powered using a Quad Motor Driver Shield (Fig 5.3).

The driver shield can control four motors at a time. It includes two TB6612FNG

motor driver chips. When compared with the traditional L298N chip, efficiency is

improved and the component size is also greatly reduced. The chip doesn't heat in to

the rated range, and generates a single path maximum output 1.2A continuous

current. The module includes a built-in low voltage detection circuit and thermal

shutdown protection circuit, which is safe and reliable. The drive shield with motors

are connected to the digital pins 3, 4, 5, 6, 7, 8, 11 and 12 of an ARDUINO MEGA

2560 board.

Fig 5.3 - Quad Motor Driver Shield

35

5.3 WiFi MODULE

The ground robot is equipped with the ability to transfer data wirelessly to a remote

desktop (Master node) using ESP8266 WiFi module. ESP8266 is an impressive, low

cost WiFi module suitable for adding WiFi functionality to an existing

microcontroller project via a UART serial connection. The hardware connections for

powering up the WiFi module and transferring data to and from the module are

extremely simple (Fig 5.4).

Fig 5.4 – Hardware connection between Esp8266 and MEGA 2560

The programming part to send and receive data can be done using AT commands. It

is necessary to ensure that we receive proper response (which can be viewed on the

serial monitor) for the basic AT commands. The list of basic AT commands, their

functions and their response are summarised here in Table 5.1

36

Table 5.1 – list of basic AT commands

Command Function Response

AT Test if AT system works correctly OK

AT+RST Reset the module OK

AT+GMR Print firmware version version, OK

AT+GSLP = time Enter deep sleep mode for time

milliseconds

time OK

Few commands related to establishing the WiFi settings, identifying the available

WiFi networks are, given in Table 5.2.

Table 5.2 – commands related to establishing the WiFi settings

AT+CWMODE=

mode

Set AP’s info which will be connect by

ESP8266

OK

AT+CWJAP=

ssid,pwd

Commands ESP8266 to connect a SSID

with supplied password

OK

AT+CWLIF List information on of connected clients ip, other

information

ESP8266, when connected to a system, can act as a TCP client/server and the related

AT commands in Table 5.3 are,

http://room-15.github.io/blog/2015/03/26/esp8266-at-command-reference/#AT
http://room-15.github.io/blog/2015/03/26/esp8266-at-command-reference/#AT+RST
http://room-15.github.io/blog/2015/03/26/esp8266-at-command-reference/#AT+GMR
http://room-15.github.io/blog/2015/03/26/esp8266-at-command-reference/#AT+GSLP

37

Table 5.3 – Related AT commands with respect to ESP8266

AT+CIPMUX=

mode

Enable / disable multiplex mode OK

AT+CIPSTATUS Get information about connection STATUS:

status

AT+CIPSTART=

type,addr,port

Start a connection as client OK

AT+CIPSEND=

length

Set length of the data that will be sent SEND OK

AT+CIFSR Get local IP address +CIFSR:ip

OK

AT+CIPSERVER

=mode[,port]

Configure ESP8266 as server OK

telnet Connect another device to the listening port

on the same network

Link

+IPD Receive network data from single connection +IPD,len:da

ta

5.4 THE ThingSpeak PLATFORM

For the ground robot to move from one location to another, motor commands are

generated based on the range and bearing calculation which is performed on

MATLAB in a remote desktop. To transfer the motor commands wirelessly to the

38

ground robot, it is necessary to have a common platform interfaceable with both

MATLAB and ARDUINO so that motor commands and acknowledgements can be

sent and received using HTTP requests. One such platform is ThingSpeak.

Fig 5.5 Data transfer via ThingSpeak

ThingSpeak is an open source Internet of Things (IoT) platform to store and

retrieve data from things using the HTTP protocol over the Internet or via a Local

Area Network. ThingSpeak allows users to create channels with specific fields,

allows them to upload/read data from specific fields of the channels using write/read

keys respectively. The outline of the process is shown in Fig.5.5.

5.5 OBJECT DETECTION MODULES

In order to detect the presence of obstacles in robot’s path, the ground robot is

equipped with an ultrasonic sensor (ARDUINO interfaceable) and a camera module

(RASPBERRY PI interfaceable). The camera module detects the presence of the

obstacle and the ultrasonic sensor determines the obstacle’s distance from the robot’s

position.

5.5.1 Camera Module

Raspberry Pi camera module V2 is an 8 MP device which can take photos and record

videos. Its horizontal and vertical field of view are 62.2 ֯ and 48.8 ֯ . The frame rate

can go up to 90fps. The image output can be obtained in the following formats: JPEG

(accelerated), JPEG + RAW, GIF, BMP, PNG, YUV420, RGB888. The video out

is available in only in raw h.264 (accelerated). The camera module requires almost

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/HTTP

39

200 – 250 mA of current. The connection of a camera module with a Raspberry Pi

board is a one step process and is shown below (Fig 5.6). The ribbon cable has to be

firmly seated on the Camera Serial Interface (CSI).

Fig 5.6 Hardware connection between camera module and Rapberry Pi board

There are four applications provided: raspistill, raspivid, raspiyuv and

raspividyuv. raspistill and raspiyuv are very similar and are intended to capture

images while raspivid and raspividyuv are for capturing videos.

 All the applications are driven from the command line, and written to take

advantage of the MMAL API which runs over OpenMAX. The MMAL API

provides an easier to use system than that presented by OpenMAX.

5.5.2 Ultrasonic Sensor Module

The Ultrasonic sensor module used is HC-SR04. The module provides 2cm to 40 cm

non-contact measurement function, the ranging accuracy can reach to 3mm. The

modules includes ultrasonic transmitters, receiver and control circuit. The Module

automatically sends eight 40 kHz and detect whether there is a pulse signal back.

The time from sending the ultrasonic pulse to receiving the echo pulse is recorded

using a built in counter. From the recorded time, the object’s distance can be

determined as follows. The connection is shown in Fig.5.7.

40

 Test distance = (recorded time × velocity of sound) / 2 (5.1)

The device can detect any object that lies within a span of 15°. 5V DC and

15mA current is required for the proper functioning of the device.

Fig 5.7 – Hardware connection between HC SR04 and MEGA 2560

 5.6 POWER SOURCES

The ARDUINO MEGA 2560 and the RASPBERRY PI type 3 model B are powered

up using different power sources. In order to supply sufficient current to the two

motors, WiFi module and the Ultrasonic sensor, six rechargeable AA batteries, each

with 2800mAh and 1.2V are used. According to the specifications of the camera

module, the RASPBERRY PI board is powered with a power bank that can provide

5V and 2A current.

5.7 SUMMARY

In this chapter, a brief description about the components present in the ground robot,

their specifications, functionalities, interconnections and the method of

programming involved has been given.

41

CHAPTER 6

IMPLEMENTATION AND RESULTS

6.1 INTRODUCTION

In this chapter, a brief description about the experimental setup is given. A mock

disaster zone was setup in an area of about 7×9 square metres. A total of 30

obstacles, each with size 60×65 square centimetres, were designed and laid out. A

single obstacle was designed by taking disaster zone images from the internet and

pasting six of them in a Cardboard. The obstacles were lifted to a height by placing

bushes below them. Goal points are indicated by the images of people and about four

goal points were setup with different number of people in each goal point.

The overview of the setup is shown in Fig.6.1.

 Fig 6.1 – Our setup

6.2 SAMPLING OF THE AERIAL VEHICLE’S VIDEO

The aerial vehicle that we used initially was a toy RC helicopter, to which a

Raspberry Pi interfaceable camera was attached. The aerial vehicle was unable to

hover over a particular location for an interval of 2 or 3 seconds which resulted in a

42

very bad footage which could not be clearly sampled. Also such RC helicopters are

not suggested during relatively strong wind currents.

The RC helicopter was replaced by an RC Quadrotor was a belief that a

quadrotor could have better stability than a helicopter. The Quadrotor was built from

a Do It Yourself construction kit. This device with a Raspberry Pi interfaceable

camera at the bottom, was able to hover for 2 to 3 seconds over a particular location.

But it suffered from maintaining the required height and repeatedly collided with the

obstacles. All the aforementioned problems were solved by using a STANDARD

DJI PHANTOM 3, with which the entire mock disaster setup was surveilled and a

video was obtained. The sampling of the video from the aerial vehicle is shown in

Fig.6.3

 Fig 6.2 – DJI PHANTOM 3

6.3 COMPUTER VISION

The usage of computer vision in our setup is discussed. The sampled images were

stitched, and the stitched image is shown in Fig.6.4. The obstacles were detected

using the SIFT object detection algorithm, where our reference image was the

obstacle taken at a close-up, and which recognized the obstacles in the stitched

image. We transformed this into the binary occupancy grid, which is shown in

Fig.6.5.

43

 Fig 6.3 – Some set of sampled images from the video

44

Fig 6.4 – A section that was stitched

 Fig 6.5 – Binary occupancy grid

45

6.4 PATH, MISSION, AND RE-PLANNING

The ground robot was initially a four wheeled robot that works on an ARDUINO

platform (Chapter 3), and is shown in Fig.6.6. The tricky part of this kind of

propulsion is getting all the wheels to turn with the same speed. If the wheels in a

pair do not in a pair are not running with the same speed, the slower one will slip

(inefficient). If the pairs do not run at the same speed. So the four wheeled ground

robot was replaced with a three wheeled ground robot. This works well with less

control strategies, only in a perfectly smooth terrain. In rugged terrain, the third free

wheel turns randomly causing severe problems to the robot motion. This can be only

corrected by using robust control strategies. So the design was switched to the initial

four wheeled system and the problems mentioned above can be tackled by using

rotary encoders which can precisely identify the distance moved by each wheel.

Fig 6.6 – Four wheeled ground robot

This video obtained from the drone was sampled suitably in MATLAB to

obtain images of the disaster setup such that there exists a partial overlap between

any two images. A stitching algorithm was run in MATLAB, which connected

the overlapped images correctly to obtain a panoramically stitched image.

In the panoramically stitched image, obstacles can be identified by an object

detection algorithm and the presence of the obstacles were blackened out to obtain

46

a binary occupancy grid. If the initial location of the robot and the final goal point

are mentioned, the Probabilistic Road Map tool in the Robotics toolbox of

MATLAB, determines the shortest path between these two locations which varies

with the size of the ground robot.

The Probabilistic Road Map tool has been run iteratively, considering four

goal points. The goal points contain different number of people and hence choosing

the order of points to be traversed was done by building a cost function. The cost

function at any time takes the ground robot’s current position, one of the possible

destinations for the ground robot, distance of that destination from the current

position and the number of people to be rescued in that destination. The cost function

is directly proportional to the distance between the two points and inversely

proportional to the number of people rescued at that particular trip.

For the four goal points, all possible combinations were identified and the cost

was evaluated. The solution that provided the least cost was identified and the

ground robot was made to traverse through the goal points in the obtained order.

The problem of introducing a new obstacle all of a sudden in the robot’s path

(unexpected land slide in the traversing path) was also addressed. This was done by

using the presence of the camera and sonar sensor in the ground robot. The camera

was used to take the picture of the path in front of the ground robot at every waypoint.

This picture was processed to see if the planned path ahead is free or blocked. If free,

the robot moves, else the distance of the new obstacle is determined using the sonar

sensor. This information is used to update the occupancy grid and a new path to the

desired destination is generated. The motion planning output from point to point is

shown in Fig.6.7, and the mission planning output is shown in Fig.6.8.

47

Fig 6.7 – Point to Point path planning

48

Fig 6.8 – Mission planning

6.5 SUMMARY

The real-time implementation of the aerial and ground vehicle collaboration was

carried out on a mock disaster setup, where earthquake imagery was overlaid on

carboard boxes and goal-points were represented with the help of density of

population stranded in certain areas. The results were also presented through images

49

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSION

From the experimental results, it can be seen that the combined efforts of an

Unmanned Aerial Vehicle and an Unmanned Ground Vehicle surpasses the human

way of approaching the same problem. Without the collaboration, it would have been

very difficult to identify places that require immediate attention. Thus the

collaboration between a UAV and a UGV has worked efficiently and provided better

way of approaching search and rescue missions. The provided solution can be

developed in many possible ways.

7.2 FUTURE WORK

 Even the DJI PHANTOM 3 faced stability issues as it was radio controlled.

Replacing Radio Controlled drones with computer controlled drones will a

significant improvement as it can improve the footage quality.

 The ground vehicle was built on an ARDUINO platform. This led to many

difficulties like absence of multithreading operations, difficulties in precise turning

etc. These problems can be prevented by building a robust ground vehicle, built with

micro controllers with better functionality than ARDUINO. This can also remove

the necessity of a master node and provide direct communication between a UAV

and a UGV

 The proposed solution makes use of Scale Invariant Feature Transformation

(SIFT) and performs panoramic stitching which is an offline process. By the use of

visual odometry, the map can be updated online which saves a lot of time.

50

 The data transfer modules that are used here are of low cost but, they consume

a lot of time to transfer data. They can be replaced by modules that offer quicker

communication as this is a problem where time plays a key role.

 It is to be noted that predefined obstacles were used here. This is not the case

in a real life disaster scenario. To overcome this problem, Learning techniques can

be used to detect if the image contains an obstacle or not.

51

REFERENCES

1. Brown, M. and Lowe, D.G., 2007. Automatic panoramic image stitching

using invariant features. International journal of computer vision, 74(1),

pp.59-73.

2. Brüggemann, B., Brunner, M. and Schulz, D., 2012. Outdoor navigation with

a coordinated multi-robot system that maintains spatial constraints. IFAC

Proceedings Volumes, 45(28), pp.1-6.

3. Butzke, J., Gochev, K., Holden, B., Jung, E.J. and Likhachev, M., 2016, May.

Planning for a ground-air robotic system with collaborative localization.

In Robotics and Automation (ICRA), 2016 IEEE International Conference

on (pp. 284-291). IEEE.

4. Delmerico, J., Mueggler, E., Nitsch, J. and Scaramuzza, D., 2017. Active

autonomous aerial exploration for ground robot path planning. IEEE Robotics

and Automation Letters, 2(2), pp.664-671.

5. Duan, H. and Li, P., 2016. Bio-inspired computation in unmanned aerial

vehicles. Springer.

6. Garzón, M., Valente, J., Roldán, J.J., Cancar, L., Barrientos, A. and Del Cerro,

J., 2016. A multirobot system for distributed area coverage and signal

searching in large outdoor scenarios. Journal of Field Robotics, 33(8),

pp.1087-1106.

7. LaValle, S.M., 2006. Planning algorithms. Cambridge university press.

8. Lowe, D.G., 2004. Distinctive image features from scale-invariant

keypoints. International journal of computer vision, 60(2), pp.91-110.

9. Michael, N., Shen, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani, K.,

Okada, Y., Kiribayashi, S., Otake, K., Yoshida, K. and Ohno, K., 2012.

Collaborative mapping of an earthquake‐damaged building via ground and
aerial robots. Journal of Field Robotics, 29(5), pp.832-841.

10. Mueggler, E., Faessler, M., Fontana, F. and Scaramuzza, D., 2014, October.

Aerial-guided navigation of a ground robot among movable obstacles.

52

In Safety, Security, and Rescue Robotics (SSRR), 2014 IEEE International

Symposium on (pp. 1-8). IEEE.

11. Murphy, R.R., 2014. Disaster robotics. MIT press.

12. Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K., Tadokoro,

S., Nishimura, T., Yoshida, T., Koyanagi, E., Fukushima, M. and Kawatsuma,

S., 2013. Emergency response to the nuclear accident at the Fukushima

Daiichi Nuclear Power Plants using mobile rescue robots. Journal of Field

Robotics, 30(1), pp.44-63.

13. Saska, M., Krajnik, T. and Pfeucil, L., 2012, March. Cooperative μUAV-UGV

autonomous indoor surveillance. In Systems, Signals and Devices (SSD), 2012

9th International Multi-Conference on (pp. 1-6). IEEE.

14. Schneider, F.E., Wildermuth, D. and Wolf, H.L., 2015, July. ELROB and

EURATHLON: Improving search & rescue robotics through real-world robot

competitions. In Robot Motion and Control (RoMoCo), 2015 10th

International Workshop on (pp. 118-123). IEEE.

15. Sofman, B., Lin, E., Bagnell, J.A., Cole, J., Vandapel, N. and Stentz, A., 2006.

Improving robot navigation through self‐supervised online learning. Journal

of Field Robotics, 23(11‐12), pp.1059-1075.

16. Szeliski, R., 2010. Computer vision: algorithms and applications. Springer

Science & Business Media.

17. Tokekar, P., Vander Hook, J., Mulla, D. and Isler, V., 2016. Sensor planning

for a symbiotic UAV and UGV system for precision agriculture. IEEE

Transactions on Robotics, 32(6), pp.1498-1511.

18. Viola, P. and Jones, M., 2001. Rapid object detection using a boosted

cascade of simple features. In Computer Vision and Pattern Recognition,

2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society

Conference on (Vol. 1, pp. I-I). IEEE.

19. Yu, B., Dong, X., Shi, Z. and Zhong, Y., 2013, July. Formation control for

quadrotor swarm systems: Algorithms and experiments. In Control

Conference (CCC), 2013 32nd Chinese (pp. 7099-7104). IEEE.

