
PLANNING TO EXPLORE VIA SELF-SUPERVISED WORLD MODELS

Ramanan Sekar

A THESIS

in

Robotics

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of of Master of Science in Engineering

2020

Professor Kostas Daniilidis
Supervisor of Thesis Signature

Professor Camillo J. Taylor
Graduate Group Chairperson Signature

Kostas Daniilidis

PLANNING TO EXPLORE VIA SELF-SUPERVISED WORLD MODELS

c� COPYRIGHT

2020

Ramanan Sekar

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

Dedicated to my father Sekar, mother Raji and sister Indhu

ii

ACKNOWLEDGEMENT

I would like to thank my advisor Professor Kostas Daniilidis and Oleh Rybkin for their

mentorship, and patiently advising me and helping me throughout. Their mentorship

has truly shaped my thought process and perspectives, and has instilled a strong work

ethic in me that I will carry forward. I would also like to thank Deepak Pathak for

this opportunity by involving me in the project, and for giving access to compute

resources at UC Berkeley and running experiments at Facebook AI, and for assisting

me in finishing this project. Being able to work with him and seeing him make

decisions has had a great impact on the way I approach problems. I also want to

thank Bernadette Bucher, for giving me the opportunity to work with her in the

curiosity project for my Independent study, and for helping me find my thesis topic

when I was unsure. Being able to interact with these phenomenally talented people,

seeing them work and solve problems, and learning from them has been a joy and

a tremendous privilege, and is something that I will cherish and reflect upon in the

future. I also want to thank my friends who’ve been understanding when I devoted

a majority of my time to this project, and gave me company when I needed it.

iii

ABSTRACT

PLANNING TO EXPLORE VIA SELF-SUPERVISED WORLD MODELS

Ramanan Sekar

Professor Kostas Daniilidis

To solve complex tasks, intelligent agents first need to explore their environments.

However, providing manual feedback to agents during exploration can be challeng-

ing. This work focuses on task-agnostic exploration, where an agent explores a

visual environment without yet knowing the tasks it will later be asked to solve.

While current methods often learn reactive exploration behaviors to maximize retro-

spective novelty, we learn a world model trained from images to plan for expected

surprise. Novelty is estimated as ensemble disagreement in the latent space of the

world model. Exploring and learning the world model without rewards, our ap-

proach, Plan2Explore (P2E), e�ciently adapts to a range of control tasks with high-

dimensional image inputs. Video results can be accessed at: https://sites.google.

com/view/planning-to-explore/

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iii

ABSTRACT . iv

LIST OF ILLUSTRATIONS . xii

CHAPTER 1 : Introduction . 1

CHAPTER 2 : Background and Related Works 5

2.1 Model-based Reinforcement Learning 5

2.2 Exploration and Intrinsic Motivation 13

2.3 Active Learning . 15

CHAPTER 3 : Planning to Explore . 20

3.1 Control with Latent Dynamics . 20

3.2 P2E . 22

3.3 Latent Disagreement . 23

3.4 Expected Information Gain . 26

CHAPTER 4 : Experiments and Results . 29

4.1 Experimental Setup . 29

4.2 Zero-shot Transfer . 32

4.3 Few-Shot Adaptation . 36

4.4 Multi-task Generalization . 37

4.5 Expected vs Retrospective Novelty 38

4.6 Comparing with MAX . 41

v

4.7 Exploration Bonuses . 42

CHAPTER 5 : Conclusions . 44

BIBLIOGRAPHY . 44

vi

LIST OF ILLUSTRATIONS

FIGURE 1 : The problem setting. We train an agent to explore to e�-

ciently learn the dynamics in an unsupervised way, and later

adapt to the task at hand, such as walking, running, flipping,

or standing . 2

FIGURE 2 : The standard setup of a reinforcement learning problem,

where an agent (represented by a parametrized policy ⇡✓)

is acting on a world, which transitions to a new state, giving

back the agent a reward for the action it just took (Levine

(2019)) . 6

FIGURE 3 : Graphical model of the RL problem setup (Levine (2019)) . 7

FIGURE 4 : Graphical model of the RSSM in (Hafner et al. (2018)). The

model observes the first two time steps and predicts the third.

Circles represent stochastic variables, and squares determin-

istic variables . 11

FIGURE 5 : Setup of Dreamer (Hafner et al. (2019)). The world model

is learnt from collecting online data from the intermediary

policy, and the policy and value estimates are updated inside

the imagination of the world model. The policy network then

acts on the latent states . 11

FIGURE 6 : Setup of Pathak et al. (2019) 16

vii

FIGURE 7 : The Latent Dynamics Model. The latent dynamics model

first encodes the input images. It then generates a sequence

of compact model states conditioned on the image embed-

dings and actions. The model is learned by reconstructing

the images from the model states. Additionally, we train an

ensemble that predicts the next image embedding given a

model state. 22

FIGURE 8 : Getting the intrinsic reward: given the world model and en-

semble, we learn long-term behaviors by latent imagination.

The intrinsic reward for learning the actor and value models

is the variance of the ensemble at each time step. 23

FIGURE 9 : A subset of the environments in DeepMind Control Suite

(Tassa et al. (2018)), some of which we use for our experiments 29

viii

FIGURE 10 : Zero-shot performance from raw pixels without state-space

input. After training the agent without reward supervision,

we provide it with a task by specifying the reward func-

tion. Throughout the exploration, we take snapshots of the

agent to train a task policy on the final task and plot its

zero-shot performance. Model-based curiosity is a version of

our approach trained with the ICM objective Pathak et al.

(2017). We see that P2E achieves state-of-the-art zero-shot

task performance on a range of tasks, and even demonstrates

competitive performance to Dreamer Hafner et al. (2019), a

state-of-the-art supervised reinforcement learning agent, on

certain tasks. This indicates that P2E is able to explore ef-

fectively and learn a global model of the environment that is

useful for adapting to new tasks, demonstrating the potential

of the task-agnostic reinforcement learning framework. More

results and videos are in the supplementary material and the

website. 33

FIGURE 11 : We test the zero-shot performance of our method on an ex-

tended set of tasks in the DM Control Suite. We compare

our performance to that of the random baseline. It is evident

that our method is robust to hyper-parameter changes . . . 34

ix

FIGURE 12 : Performance on few-shot adaptation from raw pixels with-

out state-space input. After the exploration phase, during

which the agent does not observe the reward and thus does

not solve the task, we let the agent collect a small amount of

data from the environment. Model-based curiosity is a ver-

sion of our approach trained with the ICM objective Pathak

et al. (2017). We see that P2E is able to explore the en-

vironment e�ciently in only 1000 episodes, and then adapt

its behaviour immediately after observing the reward. P2E

adapts rapidly, producing e↵ective behavior competitive to

state-of-the-art supervised reinforcement learning in just a

few collected episodes. 35

FIGURE 13 : Do task-specific models generalize? We test P2E on zero-shot

performance on four di↵erent tasks in the cheetah environ-

ment from raw pixels without state-space input. Throughout

the exploration, we take snapshots of the agent to train a task

policy on the four tasks and plot its zero-shot performance.

In addition to random exploration, we compare to an oracle

agent, Dreamer, that uses the data collected when trained on

the run forward task in a supervised way. Although Dreamer

trained on ’run forward’ is able to solve both running tasks,

it struggles on both flipping tasks, indicating that it has not

learned a complete model of the environment. 37

x

FIGURE 14 : We compare P2E to a corresponding model-free agent Pathak

et al. (2019) that uses the disagreement objective. The model-

free agent is only trained on already visited states and thus

optimizes the retrospective novelty. We adapt Pathak et al.

(2019) to zero-shot setting by training a model-based agent

on the exploration data collected by Pathak et al. (2019). We

see that our agent that maximizes expected novelty achieves

superior performance. 39

FIGURE 15 : We compare a model-based agent that plans to explore to

a model-free agent that optimizes the retrospective novelty,

namely the prediction error objective. We evaluate the zero-

shot performance of the retrospective approach by training a

model-based agent on the exploration data collected by the

retrospective approach. We see that the agent that maxi-

mizes expected novelty achieves superior performance. This

was run with a single seed only. 39

FIGURE 16 : We compare the zero-shot performance of our method to

a variant that has a small imagination of horizon of 1, ef-

fectively making it a ’reactive’ exploration method. This

simulates the performance di↵erence between optimizing for

expected novelty vs retrospective novelty. As is clearly ob-

served, optimizing for expected novelty vastly outperforms

optimizing for retrospective novelty. 40

xi

FIGURE 17 : We look at the zero-shot performance of our agent, as com-

pared to the MAX Baselines. We evaluate it against two

di↵erent variants of MAX, where we train the exploration

policy by propagating gradients through the learnt world

model, and where we train it in a model-free way by using

policy gradients. Our method outperforms both the variants

of MAX . 41

FIGURE 18 : We compare the performance of the supervised oracle with

a supervised approach that also has exploration bonuses.

We perform ablations with the coe�cient of the exploration

bonus, and it is clear that the agent with our intrinsic reward

as a bonus with a coe�cient of 0.01 augments the supervised

oracle well in tasks where the oracle struggles 42

xii

1. Introduction

The dominant approach in sensorimotor learning is to train the agent on a fixed

set of tasks specified apriori either via rewards using reinforcement learning, or from

demonstrations using imitation learning. We are interested in the case where an

agent is consistently confronted with new tasks it has never experienced before. In

this case, learning every task from scratch can be ine�cient. How can an agent solve

many tasks quickly in either zero or few-shot manner? Instead of training the agent

on each task as it becomes available, one approach is let the agent first explore the

environment in a task-agnostic manner. To explore complex environments with high-

dimensional inputs in the absence of rewards, the agent needs to follow a form of

intrinsic motivation or curiosity.

Intrinsic motivation can be defined as aiming to learn about the environment, by striv-

ing for novelty. For example, this can be implemented by seeking out parts of the

world the agent cannot yet predict accurately (Schmidhuber (1991b); Oudeyer et al.

(2007); Pathak et al. (2017)), encouraging diversity in agent’s trajectories (Klyubin

et al. (2005); Eysenbach et al. (2018)), or by aiming to visit rare states (Poupart et al.

(2006); Lehman and Stanley (2011); Bellemare et al. (2016); Burda et al. (2018b)).

Most of these self-supervised approaches internally build a model-free policy to ex-

plore, which can later be finetuned to specialize to unseen tasks given as a reward

function. However, finetuning often relies on model-free agents that require large

amounts of interaction with the environment to learn each downstream task.

Model-free approaches are not only slow in adapting to downstream tasks, they are

also ine�cient during the exploration phase. They optimize for retrospective novelty,

which conflicts with the non-stationary nature of curiosity. The agent usually first

1

)RZMVSRQIRX
[MXLSYX�6I[EVHW

+PSFEP
;SVPH�1SHIP8EWO�%KRSWXMG

)\TPSVEXMSR

>IVS�SV�*I[�7LSX
%HETXEXMSR

1SHIP�0IEVRMRK

8EWO�%

8EWO�&

8EWO�'

Figure 1: The problem setting. We train an agent to explore to e�ciently learn
the dynamics in an unsupervised way, and later adapt to the task at hand, such as
walking, running, flipping, or standing

interacts in the environment, collect some samples and then these intrinsic rewards are

calculated via agent’s current estimate of density model or prediction model. These

model-free exploration policies only maximizes what was novel in the past, and hence

keep searching aimlessly hoping to stumble upon interesting states.

In this work, we address both of these challenges — ine�cient exploration as well

as adaptation — within a common framework while learning directly from high-

dimensional image inputs. Instead of maximizing intrinsic rewards in retrospect, our

agent, Plan2Explore (P2E), explicitly plans for expected novelty in a forward-looking

manner. For this, P2E first learns a world model from its past interaction, and uses its

current estimate to imagine future trajectories and learn a strategy for exploring novel

transitions. The policy is optimized purely from imagined trajectories to maximize

the intrinsic rewards computed by the model itself. Planning to explore using the

learned model lets the agent execute only actions it deems optimal for its current

intrinsic reward. Moreover, when faced with downstream tasks, the same model can

be used to plan for goal states in a zero-shot manner.

2

The key challenge in planning to explore lies both in training accurate world models

from high-dimensional inputs, as well as in the choice of exploration objective that

explores the environment e�ciently enough for successful adaptation to downstream

tasks. We focus on world models that predict ahead an a compact latent space.

Predicting future compact representations facilitates accurate long-term predictions

and lets us e�ciently predict thousands of future sequences in parallel for policy

learning.

An ideal objective for exploration encourages actions that lead to states with high

uncertainty due to missing knowledge (epistemic uncertainty) while avoiding the in-

herent stochastic parts of environment (aleatoric uncertainty). Exploring such states

allows the agent to obtain samples that are maximally informative of the environ-

ment, leading to improved planning ability. We measure epistemic uncertainty as

the disagreement of an ensemble of one-step predictors trained alongside the world

model. The disagreement reduces to zero after seeing enough samples even if the

environment is stochastic because over time, their predictions approach the mean of

the distribution. We further show that this procedure is closely related to maximizing

the expected amount of information obtained by executing the plan.

We evaluate P2E on 11 control tasks with image inputs, without access to low-

dimensional states nor any task rewards during exploration, where it achieves state-

of-the-art zero-shot adaptation performance. Moreover, we empirically quantify the

following scientific questions:

• How does planning to explore via latent disagreement compare to a supervised

oracle and other model-free and model-based intrinsic reward objectives?

• How much task-specific experience is enough to finetune a task-agnostic model

3

to reach the task performance of task-specific agent?

• To what degree does a task-agnostic model generalize to unseen tasks compared

to a task-specific model trained on a di↵erent task in the same environment?

• What is the advantage of maximizing expected novelty in comparison to retro-

spective novelty?

4

2. Background and Related Works

We can now go into the background material and prior work done that our work

is building on top of. This specifically includes ideas on model-based reinforcement

learning methods, ideas on exploration and using intrinsic motivation as an objective

for exploration, and finally, some ideas on active-learning.

2.1. Model-based Reinforcement Learning

We proceed to take a look into Model-Based Reinforcement Learning methods. In

general, the reinforcement learning setting is laid out in Figure 2, wherein we have an

agent interacting with the world, and the agent acts based on a series of observations

it receives from the world, and the actions executed by the agent on the world results

in the transition of the world to a new state, along with a scalar value called the

reward. This is described in general by a Partially Observed Markov Decision Process

(POMDP), M = {S,O,A, T , E , r}, where S denotes the state space, A denotes the

action space, O denotes the observation space, T denotes the transition operator

which model the transition probabilities of moving the state of the world from st to

st+1 given an action at, E the emission probability p(ot|st), and r : S ⇥ A ! R the

reward function. The MDP is said to be partially observed when ground truth states

st 2 S are not directly accessible by the agent, and the only things that the agent

sees are the observations ot 2 O. The subscript t denotes the timestep in the episode,

which could start from t = 1. The states S are a su�cient statistic to describe the

system completely, and when the agent has access to these, then the system is said

to be a completely observable MDP. The transition functions on the states are said

to follow the Markov property if the transition to the future state is conditionally

independent of the past states given the current state and action.

5

Figure 2: The standard setup of a reinforcement learning problem, where an agent
(represented by a parametrized policy ⇡✓) is acting on a world, which transitions to a
new state, giving back the agent a reward for the action it just took (Levine (2019))

The agent is represented as a conditional probability distribution ⇡(at|st), which

represents the action that should be taken given a state at a specific timestep. As

represented in Figure 2, this is parametrized by a deep neural network with weights

✓. This entire setup is represented as a graphical model in in Figure 3.

If the interaction between the agent and the world goes on for T timesteps with

the episode represented by (s1, a1, ..., sT, aT), then the probability that this episode

rollout, occurs is

p✓(s1, a1, ..., sT, aT) = p✓(⌧) = p(s1)
TY

t=1

⇡✓(at|st)p(st+1|st, at) (2.1)

The objective of RL is to come up with an optimal policy ⇡✓⇤ such that

✓
⇤ = argmax

✓
E⌧⇠p✓(⌧)[

X

t

r(st, at)] (2.2)

This problem setting lends itself to many di↵erent ways of solving. If the MDP is

fully known, then dynamic programming can be used to solve it. In most real case

scenarios, we would not have access to the reward function r or the transition tensor T ,

giving rise to RL methods with two major bifurcations: model-free and model-based.

6

Figure 3: Graphical model of the RL problem setup (Levine (2019))

Model-Free methods usually rely on policy gradients to perform gradient ascent on

the policy parameters, without regarding the world model (i.e the transition tensor)

(Williams (1992); Mnih et al. (2016); Schulman et al. (2017, 2015)). The other class of

methods are the model-based methods, which typically try to learn the world model,

on top of learning a policy. After learning this world model, one can take several

approaches, of either using model-free optimization to learn a policy (Kaiser et al.

(2019); Weber et al. (2017)) or using the model to learn a policy in imagination (Ha

and Schmidhuber (2018)) Learning an accurate world model for long-horizon planning

is a di�cult problem mainly because of modeling inaccuracies, not being able to model

multiple modes of policy execution. In low dimensional environments, prior work has

been e↵ective in doing this (Chua et al. (2018a); Gal (2016); Amos et al. (2018);

Hena↵ et al. (2019)), but these environments assume a fully observable system with

access to states and reward functions. In high dimensional observational space, such

as images, learning a compact latent representation for executing a dynamics model

has been limited to very simple tasks (Watter et al. (2015); Banijamali et al. (2017)).

However, modern advances have been able to succeed to some extent in this. PlaNet

(Hafner et al. (2018)) learns the world model jointly and solves visual locomotion

tasks by latent online planning. Building on this, Dreamer (Hafner et al. (2019))

uses the same world model learnt by PlaNet but learns a parametric policy, along

with a value estimate, in the imagination of the world model by backpropagating the

gradients through the model instead of using a policy gradient optimization method.

7

Algorithm 1 PlaNet

1: initialize: Dataset D from a few random episodes.
2: while not converged do

3: while update step s collectinginterval do
4: Draw sequence chunks {(ot, at, rt)

L+k

t=k
}
B

i=1 ⇠ D uniformly at random from the
dataset

5: Compute loss L(✓) from Equation 2.4
6: Update model parameters ✓ ✓ � ↵r✓L(✓)
7: end while

8: o1 env.reset()
9: while timestep t T do

10: Infer belief over current state q(st|ot, at) from the history
11: at planner(q(st|ot, at), p)
12: Add exploration noise ✏ ⇠ p(✏) to the action
13: for actionrepeat k = 1..R do

14: r
k

t
, o

k

t+1 env.step(at)
15: end for

16: rt, ot+1
P

R

k=1 r
k

t
, o

R

t+1

17: end while

18: D D [{(ot, at, rt)Tt=1}

19: end while

For our work, we use the policy optimization from Dreamer, while retaining the world

model learnt by PlaNet.

Learning Latent Dynamics for Planning from Pixels

PlaNet is a Model based reinforcement learning approach that works to solve contin-

uous control tasks in the DeepMind Control Suite (Tassa et al. (2018)) from visual

inputs, making this a partially observable MDP. It learns a world model by encoding

visual inputs to the latent space and executing the dynamics with a recurrent unit.

The setup is as follows:

8

Image encoder: ht = e✓(ot)

Posterior dynamics: q✓(st|st�1, at�1, ht)

Prior dynamics: p✓(st|st�1, at�1)

Reward predictor: p✓(rt|st)

Image decoder: p✓(ot|st).

(2.3)

With the learnt world model, PlaNet performs model-predictive control (MPC) (Richards

(2005)) using the cross-entropy method (CEM) (Rubinstein (1997); Chua et al. (2018b))

as the planner. The planner samples action sequences at a fixed horizon length and

chooses actions such that R =
P

t+H+1
⌧=t+1 E[p(r⌧ |s⌧)] is a maximum.

PlaNet learns the transition model, the observation model and the reward predictor

from past data collected online using the online planner. PlaNet also learns an encoder

q(st|ot, at). With this, along with an online planner, PlaNet adapts its plan based

on new observations, by replanning at every step. The data is collected in an online

fashion. The di↵erent models, namely the transition, observation and the reward

model, along with the encoder, are gaussian distributions, parametrized by the mean

and variance which are modeled as a deep neural networks, using convolutional and

MLP architectures. The training objective is derived using variational inference, with

9

the evidence lower bound (ELBO) being

ln p(o1:T |a1:T) , ln

Z Y

t

p(st|st�1, at�1)p(ot|st)ds1:T

�

TX

t=1

(Eq(st|ot,at)[ln p(ot|st)]

� Eq(st�1|ot�1,at�1)[KL[q(st|ot, at)||p(st|st�1, at�1)])

(2.4)

To model the latent dynamics, PlaNet uses a Recurrent State-Space Model (RSSM),

which contains both stochastic and deterministic components in the recurrence rela-

tionship, namely

Deterministic State Model: ht = f(ht�1, st�1, at�1)

Stochastic State Model: st ⇠ p(st|ht)

Observation Model: ot ⇠ p(ot|ht, st)

Reward predictor: rt ⇠ p(rt|st, ht)

(2.5)

This relation is shown in the graphical model in Figure 4. Combining this world model

with the CEM planner, PlaNet was able to succesfully model the latent dynamics and

solve most of the continuous control tasks in DM Control Suite.

Dream to Control: Learning Behaviors by Latent Imagination

A critical missing piece from PlaNet was the lack of an actual policy network. Using a

CEM planner limits the planning horizon, and thus necessarily makes the policy short-

sighted, not being able to plan for long time-horizons. Dreamer learns long-horizon

behaviors with a policy network that trains completely inside the imagination of the

world model, by back-propagating the gradients through the world model, rather than

running a policy gradient scheme. The world model learnt by Dreamer is the exact

10

Figure 4: Graphical model of the RSSM in (Hafner et al. (2018)). The model observes
the first two time steps and predicts the third. Circles represent stochastic variables,
and squares deterministic variables

Figure 5: Setup of Dreamer (Hafner et al. (2019)). The world model is learnt from
collecting online data from the intermediary policy, and the policy and value estimates
are updated inside the imagination of the world model. The policy network then acts
on the latent states

same as the world model learnt by PlaNet, except for the fact that the online data

collection policy is now the actor network, instead of the CEM planner. To provide

a better feedback to the actor network, there’s also a value network that is used to

compute lambda-returns. This trades o↵ the bias and variance.

The highlight of Dreamer is its ability to e�ciently learn a good policy by training

only within the world model, and thus not generating any real world samples. This

process is outlined in Figure 5.

11

While the world model setup is the same, Dreamer has the extra actor network a⌧ ⇠

q�(a⌧ |s⌧), which is conditioned on the latent states and is parametrized by the network

weights �. The policy tries to maximize the expected rewards in the future, where

the rewards are sampled from the reward predictor. The value model estimates the

expected imagined rewards that the action model achieves from each state ⌧ , and the

state value network is parametrized by weights as v (s⌧) ⇡ Eq(.|s⌧)(
P

t+H

t=⌧ �
⌧�t

r⌧),

where H is the horizon. The values can be estimated in several ways. One can

either simply sum up the rewards, thereby not requiring a value network, or using the

value network, we can trade-o↵ bias and variance by using exponentially weighted

averages, given by the lamda-return. The learning objective for the action model is

to essentially maximize the value estimates, and the objective for the value model

is to minimize the L2 error between the calculated estimate and the output of the

network. Since all these calculations are through neural-networks, we can update the

policy network with backpropagation through the value model, through the imagined

states, through the model, which would then depend on the imagined actions. The

objective for the actor network is

�
⇤ = argmax

�

Eq✓,q�
[
t+HX

⌧=t

V�(s⌧)] (2.6)

and the objective for the value network is

⇤ = argmax

Eq✓,q�
[
t+HX

⌧=t

1

2
||V�(s⌧)� v (s⌧)||

2] (2.7)

The world model is learnt with the same loss as was described with PlaNet in Equation

2.4. The algorithm for Dreamer is given in Algorithm 2.

12

Algorithm 2 Dreamer

1: initialize: Dataset D from a few random episodes.
2: while not converged do

3: while update step s collectinginterval do
4: \\ Dynamics Learning
5: Draw sequence chunks {(ot, at, rt)

L+k

t=k
}
B

i=1 ⇠ D uniformly at random from the
dataset

6: Compute loss L(✓) from Equation 2.4
7: Update model parameters ✓ ✓ � ↵r✓L(✓)
8: \\ Behavior Learning
9: Imagine trajectories {(s⌧ , a⌧)}

t+H

⌧=t from each s⌧

10: Predict Rewards E(q✓(r⌧ |s⌧)) and values v (s⌧)
11: Update model parameters � �+ ↵r�L(�) from Equation 2.6
12: Update model parameters � ↵r L() from Equation 2.7
13: end while

14: o1 env.reset()
15: while timestep t T do

16: Compute st ⇠ p✓(st|st�1, at�1, ot) from history
17: Compute at ⇠ q�(at|st) from the action model
18: Add exploration noise ✏ ⇠ p(✏) to the action
19: rt, ot+1 env.step(at)
20: end while

21: D D [{(ot, at, rt)Tt=1}

22: end while

2.2. Exploration and Intrinsic Motivation

E�cient exploration is a crucial component of an e↵ective reinforcement learning

agent (Kakade and Langford (2002)). In tabular settings, it is e�ciently addressed

with exploration bonuses based on state visitation counts (Strehl and Littman (2008);

Jaksch et al. (2010)) or fully Bayesian approaches (Du↵ and Barto (2002); Poupart

et al. (2006)), however these approaches are hard to generalize to high-dimensional

states, such as images. Recently, several methods were proposed based on generaliza-

tion of these early approaches, such as using pseudo-count measures of state visitation

(Bellemare et al. (2016); Ostrovski et al. (2018)). (Osband et al. (2016)) derived an

e�cient approximation to the Thompson sampling procedure via ensembles of Q-

13

functions. (Osband et al. (2018); Lowrey et al. (2018)) use ensembles of Q-functions

to track the posterior of the value functions with randomized prior functions. In

contrast, our approach neither use reward nor state at training time.

A di↵erent line of work on intrinsic motivation considered exploration as an objective

on its own (Oudeyer et al. (2007); Oudeyer and Kaplan (2009)). Practical examples of

such approaches focus on maximizing prediction error as the intrinsic reinforcement

learning objective (Pathak et al. (2017); Burda et al. (2019)). These approaches

can also be understood as maximizing the agent’s surprise (Schmidhuber (1991a);

Achiam and Sastry (2017)). Similar to our work, other recent approaches use the

notion of model disagreement to encourage visiting states with the highest potential

to improve the model (Burda et al. (2018a); Pathak et al. (2019)), motivated by

the active learning literature (Seung et al. (1992); McCallumzy and Nigamy (1998)).

However, these approaches are model-free and are very hard to fine-tune to a new

task, requiring millions of environment steps for fine-tuning.

Self-Supervised Exploration via Disagreement

Specifically, Pathak et al. (2019) come up with a similar exploration bonus to ours,

where the use the disagreement between the predictions of the ensemble to generate

intrinsic rewards. Unlike past formulations of the problem, say maximising the vis-

itation count (Poupart et al. (2006); Lopes et al. (2012)) of less frequently visited

states, or using the prediction error of the forward dynamics model (Pathak et al.

(2017); Schmidhuber (1991a)), this formulation of ensemble disagreement lends itself

naturally to attacking the stochasticity in the environment. They train an ensemble

of forward dynamics models and incentivize the agent to explore the action space in

regions of maximum variance, or maximum disagreement between the models within

the ensemble. With this objective, one can e↵ectively show that the agent learns to

14

avoid stochasticity in the environment. Essentially, as the agent interacts with the

environment, it collects trajectories {xt, at, xt+1},and the transitions are used to train

an ensemble of forward dynamics models {f✓1 , f✓2 , ..., f✓k}, which are essentially one

step prediction models. The models can be trained in a straightforward manner with

the L2 prediction error, namely ||f(xt, at; ✓)� xt+1||
2
2 by bootstrapping. States which

have not yet been visited would generate a high variance within the ensemble, result-

ing in a high disagreement about the next state. This metric is used as the intrinsic

reward, namely the variance among the next state predictions in the ensemble,

r
i

t
, E✓[||f(xt, at; ✓)� E✓[f(xt, at; ✓)]||

2
2] (2.8)

Note that the ground truth next state is not really necessary to generate the intrinsic

rewards. The paper then shows this method working in Atari games and in robot

control tasks, by training the RL agent with PPO (Schulman et al. (2017)). However,

while this approach is sound, it lacks several key aspects. Firstly, it still looks only

at retrospective novelty and not expected novelty. Secondly, even while estimating

the epistemic uncertainty with the disagreement metric, the approach is still model-

free, and that still makes it severely lacking in terms of sample e�ciency, and task

e�ciency. The only policy being learnt here is the exploration policy and if one needs

to actually get a task policy out of this, then one needs to finetune a task policy, which

is definitely not an easy task. The process behind Pathak et al. (2019) is shown in

Figure 6

2.3. Active Learning

The idea of actively exploring to collect the most informative data goes back to the

formulation of the information gain Lindley (1956). MacKay (1992) described how a

learning system might optimize Bayesian objectives for active data selection based on

15

Figure 6: Setup of Pathak et al. (2019)

the information gain. Sun et al. (2011) derived a model-based reinforcement learning

agent that can optimize the infinite-horizon information gain and experimented with

it in tabular settings. The closest works to ours are Chua et al. (2018b); Shyam et al.

(2019), which use a measurement of disagreement or information gain through ensem-

bles of neural networks in order to incentivize exploration. However, these approaches

are restricted to setups where low-dimensional states are available, whereas we design

a latent state approach that scales to high-dimensional observations. Moreover, we

provide a theoretical connection between information gain and model disagreement.

Model Based Active Exploration

The closest work to ours is MAX (Shyam et al. (2019)). MAX also looks into the

fact that most exploration methods are reactive and are not active, where the in-

ternal model of the agent essentially guides itself to look for places where it isn’t

confident. To this end, MAX uses an ensemble of dynamics models and uses the

disagreement between the next state predictions to come up with a novelty metric.

To calculate the disagreement, MAX has a more general formulation by using the

Jensen Shannon Divergence (JSD) for discrete environments, and Jesen Renyi Diver-

16

gence (JRD) for continuous environments. MAX uses this to construct policies that

are purely exploratory in nature. If T is the space of all possible transition func-

tions, and if � is one such transition, then the information gain from this transition

is IG(s, a, s0) = IG(�) = DKL(P(T |�)||P(T)). So, for an exploration policy ⇡, the

novelty, or the utility from that policy can be given to be

IG(⇡) = Et⇠P(T)[Es,a⇠P(S,A|⇡,t)[u(s, a)] (2.9)

where

u(s, a) =

Z

T

Z

S
IG(s, a, s0)p(s0|a, s, t)p(t)ds0dt = JSD{P(S|s, a, t)|t ⇠ P(T)} (2.10)

where JSD is the Jensen-Shannon Divergence, capturing the disagreement present in

a space of distributions. Using this utility, MAX constructs an internal MDP, where

an exploration policy tries to maximize the expected utility, thereby, visiting states

that are expected to have high novelty. The ensemble is trained with bootstrapping,

and to actually be able to calculate the utility tractably with samples, the utility is

approximated as

u(s, a) ' H(
1

N

NX

i=1

P(S|s, a, ti))�
1

N

NX

i=1

H(P(S|s, a, ti)) (2.11)

For large continuous spaces, the JSD is replaced by the JRD, with the Renyi entropy,

and the renyi entropy has a closed-form solution for a mixture of N Gaussians (Wang

17

Algorithm 3 MAX

1: initialize: Dataset D from a few random episodes.
2: Ensemble, T 0 = {t1, t2, ..., tN}

3: while exploring do

4: ExplorationMDP (S,A,Uniform{T
0
}, u, �(s⌧))

5: ⇡ Solve(ExplorationMDP)
6: a⌧ ⇠ ⇡(s⌧)
7: act in the environment: s⌧+1 ⇠ P(S|s⌧ , a⌧ , t⇤)
8: D D [{(s⌧ , a⌧ , s⌧+1}

9: Train ti on D for each ti in T
0

10: end while

11: return Ensemble T
0

et al., 2009), given by

JRD{Ni(µi,⌃i)|i = 1...N} = H2(
NX

i

1

N
Ni)�

1

N

NX

i

H2(Ni)

= � ln[
1

N2

NX

i,j

D(Ni,Nj)]�
1

N

NX

i

ln |⌃i|

2
� d ln(2)/2

(2.12)

where D(Ni,Nj) =
1

|⌦|1 exp(�
1
2�

T⌦�1�) with ⌦ = ⌃i + ⌃j and � = µj � µi. The

Equation 2.12 measures the divergence among predictions of models, and is used as

the utility for practical purposes in continuous state spaces. The algorithm behind

max is given in Algorithm 3

While MAX has a much more general formulation of the disagreement objective than

ours, MAX still works on state spaces, and does not scale up to high dimensional

observations like pixels. Furthermore, MAX still uses a model-free approach to train

its exploration policy, namely SAC (Haarnoja et al. (2018)). On the other hand, we

scale up to high dimensional observations, without any state information, and we

train our policies by backpropagating through the learned model, resulting in a more

18

e�cient optimization. MAX also requires larger computational resources to execute,

as the ensemble is made up of the full dynamics model, whereas we have light-weight,

one step prediction models for our ensemble, and use a single larger world model to

train the exploration policy in imagination.

19

3. Planning to Explore

We proceed to discuss our contribution. We present a method to e�ciently explore

given high dimensional pixel observations in a task-agnostic manner by using the

disagreement within an ensemble in the latent space. We build exploration policies

that collect data based on expected novelty, irrespective of the task at hand. We show

that this method builds much more generalizable world models that can transfer well

to tasks at test time with very few supervised episodes, even compared to a supervised

Oracle, which we take to be Dreamer (Hafner et al. (2019)).

3.1. Control with Latent Dynamics

World models summarize past experience into a representation of the environment

that enables predicting imagined future sequences (Sutton, 1991; Watter et al., 2015;

Ha and Schmidhuber, 2018). When sensory inputs are high-dimensional observations,

predicting compact latent states st lets us e�ciently predict many future sequences

in parallel. The model states st are not to be confused with the unknown true

environment states. Specificially, we use the latent dynamics model of PlaNet (Hafner

et al., 2018), that consists of the following key components that are illustrated in 7,

Image encoder: ht = e✓(ot)

Posterior dynamics: ✓(st|st�1, at�1, ht)

Prior dynamics: p✓(st|st�1, at�1)

Reward predictor: p✓(rt|st)

Image decoder: p✓(ot|st).

(3.1)

The image encoder is implemented as a CNN, and the posterior and prior dynam-

ics share an RSSM. The temporal prior predicts forward without access to the cor-

20

responding image. The reward predictor and image decoder provide a rich learn-

ing signal to the dynamics. The distributions are parameterized as diagonal Gaus-

sians. All model components are trained jointly similar to a variational autoencoder

(VAE) (Kingma and Welling, 2013; Rezende et al., 2014) by maximizing the evidence

lower bound (ELBO).

max
✓

Eq✓(s1:T |o1:T ,a1:T)

LX

t=1

⇣
ln p✓(rt|st) + ln p✓(ot|st)

�KL(q✓(st|st�1, at�1, ot)||p✓(st|st�1, at�1))
⌘ (3.2)

Given this learned world model, we need to derive behaviors from it. Instead of online

planning, we use Dreamer (Hafner et al., 2019) to e�ciently learn a parameteric policy

inside the world model that considers long-term rewards. Specifically, we learn two

neural networks that operate on latent states of the model. The state-value estimates

the sum of future rewards and the actor tries to maximize these predicted values,

Actor: ⇡�(at|st) Value: V (st). (3.3)

The actor and value learn from the same forward predictions by the learned world

model. These are imagined using the transition model and the actor. They start

from latent states obtained by encoding images from the replay bu↵er. The actor

e�ciently maximizes the predicted values by propagating their gradients through the

neural network dynamics model into the actor.

max
⇡

Ep,⇡

HX

t=1

�
t
V (st) (3.4)

min
V

Ep,⇡

HX

t=1

1

2

⇣
V (st)�

�
rt + �V (st+1)

�⌘2

(3.5)

21

ŋː

Öː Öˑ

ŋː �ͼ ŋˑŋˑ �ͼ ŋ˒ŋ˒ �ͼ
)RGSHIV (]REQMGW (IGSHIV)RWIQFPI

Figure 7: The Latent Dynamics Model. The latent dynamics model first encodes
the input images. It then generates a sequence of compact model states conditioned
on the image embeddings and actions. The model is learned by reconstructing the
images from the model states. Additionally, we train an ensemble that predicts the
next image embedding given a model state.

Both actor and value are e�ciently optimized using gradients. The actor is updated

by propagating the value gradient back through the imagined latent transitions using

stochastic backpropagation. The world model is kept fixed while optimizing the actor

and value. When collecting experience, the actor is applied to the current latent state

of the episode to generate actions.

3.2. P2E

We consider a learning setup with two phases, as illustrated in fig:setting. During

task-agnostic exploration, the agent gathers information about the environment and

summarizes this past experience in the form of a parametric world model. After

exploration, the agent is given a downstream task in the form of a reward function

that it should adapt to with no or limited additional environment interaction.

We approach this setup by learning a global world model during exploration, as shown

22

ŋː

Ģũː

ÖːƑː

Ģũˑ

ÖˑƑˑ

Ģũ˒

Ö˒Ƒ˒d' d' d'

dÖŶāłŶ�'ĢŭÖėũāāĿāłŶ�̈d'̉

ŭŶ

Ğ�ͼ� Ŷ̻ːː

Ğ�ͼ� Ŷ̻ːˑ

Ğ�ͼ� Ŷ̻ː˒ ĢũŶ

ÁÖũ

)RGSHIV (]REQMGW (IGSHIV)RWIQFPI
Figure 8: Getting the intrinsic reward: given the world model and ensemble, we learn
long-term behaviors by latent imagination. The intrinsic reward for learning the actor
and value models is the variance of the ensemble at each time step.

in alg:exploration. This is achieved by training an exploration policy inside of the

world model to seek out novel states as estimated by ensemble disagreement in latent

space. Crucially, this intrinsic reward can be evaluated without generating images,

which allows e�cient massive parallel learning to quickly to react changes in the

non-stationary intrinsic reward.

During adaptation, the we can e�ciently optimize a task policy by imagination inside

of the world model, as shown in alg:adaptation. Since this model is trained without

being biased toward a specific task, it can only be learned once and then used to

adapt to multiple downstream tasks.

3.3. Latent Disagreement

To e�ciently learn a world model of an unknown environment, we must select tra-

jectories in a directed manner. A successful strategy should explore the environment

such as to collect new experience that improves the model the most. For this, we

23

Algorithm 4 Planning to Explore via Latent Disagreement

1: initialize: Dataset D from a few random episodes.
2: World model M.
3: Latent disagreement ensemble E.
4: Exploration actor-critic ⇡LD.
5: while exploring do

6: Train M on D.
7: Train E on D.
8: Train ⇡LD on LD reward in imagination of M.
9: Execute ⇡LD in the environment to expand D.
10: end while

11: return Task-agnostic D and M

Algorithm 5 Zero and Few-Shot Task Adaptation

1: input: World model M.
2: Dataset D without rewards.
3: Reward function R.
4: initialize: Latent-space reward predictor R̂.
5: Task actor-critic ⇡R.
6: while adapting do

7: Distill R into R̂ for sequences in D.
8: Train ⇡R on R̂ in imagination of M.
9: Execute ⇡R for the task and report performance.
10: Optionally, add task-specific episode to D and repeat.
11: end while

12: return Task actor-critic ⇡R.

quantify the model’s uncertainty about its predictions for di↵erent latent states. An

exploration policy then seeks out states with high uncertainty. Once executed in the

environment, the model is trained on the newly acquired trajectories and reduces its

uncertainty in these and the process is repeated.

Quantifying uncertainty is a long standing open challenge in deep learning (MacKay,

1992; Gal, 2016). In this paper, we use ensemble disagreement as one of the empiri-

cally successful methods for quantifying uncertainty Lakshminarayanan et al. (2017);

Osband et al. (2018). As shown in fig:method, we train an ensemble to predict, from

24

each model state, the next encoder features. The variance of the ensemble serves as

the estimate of uncertainty.

Intuitively, because the ensemble models have di↵erent initialization and observe data

in a di↵erent order, their predictions di↵er for unseen inputs. Once the data is added

to the training set, however, the models will converge towards more similar predictions

and the disagreement decreases. Eventually, once the whole environment is explored,

the models should converge to identical predictions.

Formally, we define an ensemble of one-step predictive models with parameters {wk |

k 2 [1;K]}. Each of these models takes a model state st and action at as input

and predicts the next image embedding ht+1. The models are trained with the mean

squared error, which is equivalent to Gaussian log-likelihood,

Ensemble predictors: q(ht+1|wk, st, at)

q(ht+1|wk, st, at) , N (µ(wk, st, at), 1).

(3.6)

We quantify model uncertainty as the variance over predicted means of the di↵erent

ensemble members and use this disagreement as the intrinsic reward irt , D(st, at)

to train the exploration policy,

D(st, at) , Var
�
{µ(wk, st, at) | k 2 [1;K]}

�

=
1

K � 1

X

k

�
µ(wk, st, at)� µ

0�2
,

µ
0 , 1

K

X

k

µ(wk, st, at).

(3.7)

The intrinsic reward is non-stationary because the world model and the ensemble

predictors change throughout exploration. Indeed, once certain states are visited by

25

the agent and the model gets trained on them, these states will become less interesting

for the agent and the intrinsic reward for visiting them will decrease.

We learn the exploration policy using the Dreamer algorithm (3.1). Since the intrinsic

reward can be computed in the compact representation space of the latent dynamics

model, we can optimize the learned actor and value from imagined latent trajectories

without generating images. This lets us e�ciently optimize the intrinsic reward of

the current model and ensemble without additional environment interaction.

3.4. Expected Information Gain

Latent disagreement has an information-theoretic interpretation. This subsection

derives our method from the amount of information gained by interacting with the

environment, which has its roots in optimal Bayesian experiment design (Lindley,

1956; MacKay, 1992).

Because the true dynamics are unknown, the agent treats the optimal dynamics

parameters as a random variable W . To explore the environment as e�ciently as

possible, the agent should seek out future states that are informative of our belief

over the parameters.

Mutual information formalized the amount of bits that a future trajectory provides

about the optimal model parameters on average. We aim to find a policy that shapes

the distribution over future states to maximize the mutual information between the

image embeddings H1:T and parameters W ,

I(Ht+1;W |st, at) (3.8)

We operate on image embeddings rather then images themselves to save computa-

26

tion. To select the most promising data during exploration, the agent maximizes the

expected information gain,

a
⇤
t
, argmax

at

I(Ht+1;W |st, at). (3.9)

This expected information gain can be rewritten as conditional entropy of trajectories

subtracted from marginal entropy of trajectories, which correspond to, respectively,

the aleatoric and the total uncertainty of the model,

I(Ht+1;W |st, at)

= H(Ht+1|st, at)� H(Ht+1|W, st, at).
(3.10)

We see that the information gain corresponds to the epistemic uncertainty, i.e. the

reducible uncertainty of the model that is left after subtracting the expected amount

of data noise from the total uncertainty.

Trained via squared error, our ensemble members are conditional Gaussians with

means produced by neural networks and fixed variances. The ensemble can be seen

as a mixture distribution of parameter point masses,

p(w) , 1

K

X

k

�(w � wk)

p(ht+1|wk, st, at) , N (ht+1|µ(wk, st, at), �
2).

(3.11)

Because the variance is fixed, the conditional entropy does not depend on the state

27

or action in our case (D is the dimensionality of the predicted embedding),

H(Ht+1|W, st, at) =
1

K

X

k

H(Ht+1|wk, st, at)

=
D

K

X

k

ln �k(st, at) + const.
(3.12)

Maximizing information gain then means to simply maximize the marginal entropy

of the ensemble prediction. For this, we make the following observation: the marginal

entropy is maximized when the ensemble means are far apart (disagreement) so

the modes overlap the least, maximally spreading out probability mass. While the

marginal entropy has no closed-form expression suitable for optimization, one heuris-

tic to measure how far the ensemble means are apart is the empirical variance over

ensemble means,

D(st, at) ,
1

K � 1

X

k

�
µ(wk, st, at)� µ

0�2
,

µ
0 , 1

K

X

k

µ(wk, st, at).
(3.13)

To summarize, our exploration objective defined in 3.3, which maximizes the vari-

ance of ensemble means, approximates the information gain and thus should find

trajectories that will e�ciently reduce the model uncertainty.

28

4. Experiments and Results

Our experiments focus on evaluating whether our proposed Plan2Explore agent is

able to fulfill the original motivation: how to e�ciently explore and build a model of

the world that allows it to quickly adapt and solve tasks in zero or few-shot manner.

The rest of the subsections are organized in terms of the key scientific question we

would like to investigate as discussed in the introduction.

4.1. Experimental Setup

We use the DM Control Suite (Tassa et al. (2018)) tasks, a standard benchmark for

continuous control. All experiments are performed with only visual observations. We

use RGB visual observations with 64⇥64 resolution. We have selected a diverse set of

8 tasks, that feature sparse rewards, high dimensional action spaces, and environments

with unstable equilibria and environments that require a long planning horizon. We

use episode length of 1000 steps and a fixed action repeat of R = 2 for all the tasks.

Specifically, we will be working with visual inputs in continuous control tasks from

the environments in DeepMind Control Suite (Tassa et al. (2018)) to demonstrate vi-

ability of our methods scaling up to high-dimensional inputs. The visual input sizes

that we handle are 64⇥64⇥3. We have selected a diverse set of 8 tasks which individ-

Figure 9: A subset of the environments in DeepMind Control Suite (Tassa et al.
(2018)), some of which we use for our experiments

29

ually have di↵erent challenges associated with them. Reacher and Cartpole Swingup

Sparse have sparse rewards, while Cheetah and Walker have higher dimensional state

and action spaces. Hopper and all the Swingup tasks have unstable equilibria, with

Swingup tasks also requiring a longer planning horizon. The tasks have action spaces

between �1 and 1, with episode length of 1000 steps. We use a fixed action repeat

parameter of R = 2 for all the tasks. In addition to these task, we desgined new tasks

for the Cheetah environment. The new tasks are Cheetah Run Backwards, which tries

to maximize the backward moving velocity, and Cheetah Flipping Forward and Back-

ward tasks, which try to maximize the angular velocity about the torso of Cheetah

in the corresponding directions.

Reward details: To test the generalization performance of the our agent, we define

three new tasks in the Cheetah environment: Cheetah Run Backwards, Cheetah Flip

Forward, Cheetah Flip Backward.

The Cheetah Run Backwards task is defined analogously to Cheetah Run as follows:

The reward r is linearly proportional to the backwards velocity vb up to a maximum

of 10m/s, which means r(vb) = max(0,min(vb/10, 1)), where vb = �v and v is the

forward velocity of the Cheetah.

The Cheetah Flip Backward task is defined as follows: The reward r is linearly

proportional to the backwards angular velocity !b up to a maximum of 5rad/s, which

means r(!b) = max(0,min(!b/5, 1)), where !b = �! and ! is the angular velocity

about the positive Z-axis, as defined in DeepMind Control Suite.

The Cheetah Flip Forward task is defined as follows: The reward r is linearly propor-

tional to the forward angular velocity ! up to a maximum of 5rad/s, which means

r(!) = max(0,min(!/5, 1)).

30

Implementation We use Hafner et al. (2019) with the original hyperparameters

unless specified otherwise to optimize both exploration and task polices of P2E. We

found that additional capacity provided by increasing the hidden size of the GRU in

the latent dynamics model to 400 and the deterministic and stochastic components

of the latent space to 60 helped performance. For a fair comparison, we maintain

this model size for Dreamer and other baselines. For latent disagreement, we use an

ensemble of 5 one-step prediction models implemented as 2 hidden-layer MLP. Full

details are in the supplementary material.

Baselines We compare our agent to a state-of-the-art task-oriented agent that re-

ceives reward information throughout training, Dreamer Hafner et al. (2019). We

also compare to two unsupervised agents, a random data collection policy that uni-

formly samples from the action space of environment, and model-based curiosity, a

version of our method that uses the the model prediction loss as intrinsic reward, as

proposed in ICM Pathak et al. (2017). While ICM uses the L2 error of predicting

encoded features, we use the image-specific full model loss of the encoder, decoder

and the RSSM as a metric for intrinsic rewards. Note that this reward can only be

computed when ground truth data is available, and needs a separate reward predictor

to optimize it in a model-based fashion. All compared methods share the same model

hyperparameters.

In addition to these model-based agents, we also use the model-free agents from

Pathak et al. (2019) and Pathak et al. (2017). While adapting these methods to a

new task would be very data-ine�cient, we instead use the exploration data produced

by these methods to train a Dreamer agent. We then test the zero or few shot

performance of this Dreamer agent on a new task.

31

Number of Runs for Error Bars: First, we discuss about the error bars in the

plots and the number of seeds being used. We run every experiment with three

di↵erent random seeds. The shaded area of the graphs shows the standard deviation

in performance. Second, all the plots in the main paper, and in the supplementary,

are smoothed with a rolling mean that takes into account the past 8 data points. This

was done so as to provide cleaner looking plots that indicate the general trend. Low

variance in all the curves consistently across all figures suggests that our approach is

very reproducible.

4.2. Zero-shot Transfer

How good is zero-shot transfer to new tasks?

To test whether P2E has learned a global model of the environment that can be

used to solve new tasks, we evaluate zero-shot performance of our agent. Our agent

learns a model without using any task-specific information. After that, a separate

task agent is trained, which optimizes the task reward using only the model learned

in an unsupervised way and no new data. To specify the task, we provide the agent

with the reward function that is used to label its replay bu↵er with rewards. This

process is described in the Algorithm 5, with the step 10 omitted.

In 10 we plot the zero-shot performance of our task agent with respect to di↵erent

amounts of exploration data by training the task agent continuously. The results in-

dicate that the zero-shot performance of P2E is competitive to Dreamer, even outper-

forming it in the hopper hop task. Moreover, P2E overall performs better than other

exploration strategies, sometimes being the only successful unsupervised method.

We see that P2E was able to successfully learn a task-agnostic model of the envi-

ronment, as well as to e�ciently derive task-oriented behavior from this model. We

32

0 1 2 3 4
(nvirRnPHnW 6WHSs 1H6

0

100

200

300

400

500

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

AcrRERW 6ZinguS

0 1 2 3 4
(nvirRnPHnW 6WHSs 1H6

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

CarWSROH 6ZinguS

0 1 2 3 4
(nvirRnPHnW 6WHSs 1H6

0

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

CarWSROH 6ZinguS 6SarsH

0 1 2 3 4
(nvirRnPHnW 6WHSs 1H6

0

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

ChHHWah 5un

0 1 2 3 4
(nvirRnPHnW 6WHSs 1H6

0

100

200

300

400

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

HRSSHr HRS

0 1 2 3 4
(nvirRnPHnW 6WHSs 1H6

0

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

3HnduOuP 6ZinguS

0 1 2 3 4
(nvirRnPHnW 6WHSs 1H6

0

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

5HachHr (asy

0 1 2 3 4
(nvirRnPHnW 6WHSs 1H6

0

200

400

600

800

1000

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

WaOkHr WaOk

2urs (unsuSHrvisHd) 2racOH (suSHrvisHd) 0RdHO BasHd CuriRsiWy (unsuSHrvisHd) 5andRP (unsuSHrvisHd)

Figure 10: Zero-shot performance from raw pixels without state-space input. After
training the agent without reward supervision, we provide it with a task by specifying
the reward function. Throughout the exploration, we take snapshots of the agent to
train a task policy on the final task and plot its zero-shot performance. Model-based
curiosity is a version of our approach trained with the ICM objective Pathak et al.
(2017). We see that P2E achieves state-of-the-art zero-shot task performance on a
range of tasks, and even demonstrates competitive performance to Dreamer Hafner
et al. (2019), a state-of-the-art supervised reinforcement learning agent, on certain
tasks. This indicates that P2E is able to explore e↵ectively and learn a global model of
the environment that is useful for adapting to new tasks, demonstrating the potential
of the task-agnostic reinforcement learning framework. More results and videos are
in the supplementary material and the website.

33

0.0 0.5 1.0 1.5 2.0
7raiQiQg 6WHSs 1H7

200

400

600

800

1000

ZH
rR

-s
hR

W 3
Hr

fR
rP

aQ
FH

CarWSROH BaOaQFH

0.0 0.5 1.0 1.5 2.0
7raiQiQg 6WHSs 1H7

0

200

400

600

800

1000

ZH
rR

-s
hR

W 3
Hr

fR
rP

aQ
FH

CarWSROH BaOaQFH 6SarsH

0.0 0.5 1.0 1.5 2.0
7raiQiQg 6WHSs 1H7

0

200

400

600

800

1000

ZH
rR

-s
hR

W 3
Hr

fR
rP

aQ
FH

CuS CaWFh

0.0 0.5 1.0 1.5 2.0
7raiQiQg 6WHSs 1H7

0

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

aQ
FH

)iQgHr 6SiQ

0.0 0.5 1.0 1.5
7raiQiQg 6WHSs 1H7

0

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

aQ
FH

)iQgHr 7urQ (asy

0.0 0.5 1.0 1.5
7raiQiQg 6WHSs 1H7

0

100

200

300

400

500

600

700

ZH
rR

-s
hR

W 3
Hr

fR
rP

aQ
FH

)iQgHr 7urQ Hard

0.0 0.5 1.0 1.5 2.0
7raiQiQg 6WHSs 1H7

0

200

400

600

800

1000

ZH
rR

-s
hR

W 3
Hr

fR
rP

aQ
FH

HRSSHr 6WaQd

0.0 0.5 1.0 1.5
7raiQiQg 6WHSs 1H7

50

100

150

200

250

ZH
rR

-s
hR

W 3
Hr

fR
rP

aQ
FH

4uadruSHd 5uQ

0.0 0.5 1.0 1.5
7raiQiQg 6WHSs 1H7

100

200

300

400

500

ZH
rR

-s
hR

W 3
Hr

fR
rP

aQ
FH

4uadruSHd WaOk

0.0 0.5 1.0 1.5 2.0
7raiQiQg 6WHSs 1H7

0

200

400

600

ZH
rR

-s
hR

W 3
Hr

fR
rP

aQ
FH

5HaFhHr Hard

0.0 0.5 1.0 1.5 2.0
7raiQiQg 6WHSs 1H7

100

200

300

400

500

600

700

ZH
rR

-s
hR

W 3
Hr

fR
rP

aQ
FH

WaOkHr 5uQ

0.0 0.5 1.0 1.5
7raiQiQg 6WHSs 1H7

200

300

400

500

ZH
rR

-s
hR

W 3
Hr

fR
rP

aQ
FH

WaOkHr 6WaQd

2urs (uQsuSHrvisHd) 5aQdRP (uQsuSHrvisHd)

Figure 11: We test the zero-shot performance of our method on an extended set of
tasks in the DM Control Suite. We compare our performance to that of the random
baseline. It is evident that our method is robust to hyper-parameter changes

emphasize that P2E performs completely unsupervised exploration, and Dreamer has

a significant advantage as it is allowed to collect task-oriented data in our experi-

mental setup. Yet, P2E is able to solve all presented tasks, often performing on par

or outperforming the supervised agent, Dreamer. Moreover, the latent disagrement

reward outperforms other proposed rewards such as model error Pathak et al. (2017)

as well as random exploration.

We have run more experiments on other tasks in DM Control Suite, represented in

Figure 11. We compare our approach to that of the random baseline. Except for

Reacher Hard, our approach always either matches the random baseline outperforms

it by a large margin. Noting that our approach maintains the same set of hyper-

parameters across the di↵erent tasks, it is evident that our approach is robust.

34

0.0 0.5 1.0
(nvirRnPHnW 6WHSs 1H6

0

100

200

300

400

5H
Wu

rn
s

AcrRERW 6winguS

0.0 0.5 1.0
(nvirRnPHnW 6WHSs 1H6

0

200

400

600

800
5H

Wu
rn

s

CarWSROH 6winguS

0.0 0.5 1.0
(nvirRnPHnW 6WHSs 1H6

0

200

400

600

800

5H
Wu

rn
s

CarWSROH 6winguS 6SarsH

0.0 0.5 1.0
(nvirRnPHnW 6WHSs 1H6

0

200

400

600

800

5H
Wu

rn
s

ChHHWah 5un

0.0 0.5 1.0
(nvirRnPHnW 6WHSs 1H6

0

100

200

300

5H
Wu

rn
s

HRSSHr HRS

0.0 0.5 1.0
(nvirRnPHnW 6WHSs 1H6

0

200

400

600

800

5H
Wu

rn
s

3HnduOuP 6winguS

0.0 0.5 1.0
(nvirRnPHnW 6WHSs 1H6

0

200

400

600

800

1000

5H
Wu

rn
s

5HachHr (asy

0.0 0.5 1.0
(nvirRnPHnW 6WHSs 1H6

0

200

400

600

800

1000

5H
Wu

rn
s

WaOkHr WaOk

2urs (unsuSHrvisHd) 2racOH (suSHrvisHd) 0RdHO BasHd CuriRsiWy (unsuSHrvisHd) 5andRP (unsuSHrvisHd)

Figure 12: Performance on few-shot adaptation from raw pixels without state-space
input. After the exploration phase, during which the agent does not observe the
reward and thus does not solve the task, we let the agent collect a small amount
of data from the environment. Model-based curiosity is a version of our approach
trained with the ICM objective Pathak et al. (2017). We see that P2E is able to
explore the environment e�ciently in only 1000 episodes, and then adapt its behaviour
immediately after observing the reward. P2E adapts rapidly, producing e↵ective
behavior competitive to state-of-the-art supervised reinforcement learning in just a
few collected episodes.

35

4.3. Few-Shot Adaptation

How many supervised samples are needed forfinetuning to match the or-

acle?

While zero-shot learning might su�ce for some tasks, in general we will want to adapt

our model of the world to task-specific information. In this section, we test whether

few-shot adaptation of the model to a particular task is competitive to training a

fully supervised task-specific model. To adapt our model, we only add 100 � 150

supervised episodes which falls under ‘few-shot’ adaptation. Furthermore, in this

setup, to evaluate the data e�ciency of P2E we set the number of exploratory episodes

to only 1000. In order to e�ciently adapt in a few-shot manner, we increase the

number of model training steps before collecting new episode by 10 with respect to

the default parameter. To provide a fair comparison, we similarly increase the number

of training steps for Dreamer by 10 throughout the entire training procedure.

In the exploration phase of Figure 12, i.e., left of the vertical line, our agent does not

aim to solve the task, as it is still unknown, however we expect that during some period

of exploration it will coincidentally achieve higher rewards as it explores the parts of

the state space relevant for the task. The performance of unsupervised methods is

coincidental until 1000 episodes and then it switches to task-oriented behaviour for

remaining 150 episodes, while for supervised, it is task-oriented throughout. That’s

why we see a big jump to right of vertical line for unsupervised methods. In the

few-shot learning setting, P2E eventually performs competitively to Dreamer on all

tasks, significantly outperforming it on the hopper task. P2E is also able to adapt

quicker or similar to other unsupervised agents on all tasks. These results show that

a task-agnostic agent, when presented with a task specification, should be able to

rapidly adapt its model to the task information, matching or outperforming the fully

36

0.0 0.5 1.0 1.5
(nvirRnment 6teSs 1e6

0

200

400

600

800

5e
tu

rn
s

Cheetah 5un

0.5 1.0 1.5
(nvirRnment 6teSs 1e6

0

200

400

600

800

5e
tu

rn
s

Cheetah 5un BaFk

0.0 0.5 1.0 1.5
(nvirRnment 6teSs 1e6

200

300

400

500

600

700

800

900

1000

5e
tu

rn
s

Cheetah)OiS BaFkward

0.0 0.5 1.0 1.5
(nvirRnment 6teSs 1e6

200

400

600

800

1000

5e
tu

rn
s

Cheetah)OiS)Rrward

2urs (unsuServised) 5andRm (unsuServised) 2raFOe (7rained Rn 5un)Rrward)

Figure 13: Do task-specific models generalize? We test P2E on zero-shot performance
on four di↵erent tasks in the cheetah environment from raw pixels without state-space
input. Throughout the exploration, we take snapshots of the agent to train a task
policy on the four tasks and plot its zero-shot performance. In addition to random
exploration, we compare to an oracle agent, Dreamer, that uses the data collected
when trained on the run forward task in a supervised way. Although Dreamer trained
on ’run forward’ is able to solve both running tasks, it struggles on both flipping tasks,
indicating that it has not learned a complete model of the environment.

supervised agent trained only for that task. Moreover, P2E is able to learn this

general model with a small amount of samples, matching Dreamer, which is fully

task-specific, in data e�ciency.

4.4. Multi-task Generalization

Do task-agnostic models generalize better than supervised task-specific

models?

If the quality of our learned model is good, it should be transferable to multiple

tasks. In this section, we test the quality of the learned model on generalization to

multiple tasks in the same environment. We devise a set of three new tasks for the

Cheetah environment, specifically, running backwards, flipping forwards, and flipping

backwards. We evaluate the zero-shot performance of P2E, and additionally compare

to a Dreamer agent that is only allowed to collect data on the running forward task

and then tested on zero-shot performance on the three other tasks.

37

13 shows that while Dreamer performs well on both running tasks, it fails to solve

the flipping tasks, performing comparably to random exploration. In contrast, P2E

performs well across all tasks, outperforming Dreamer on the flipping tasks. This

indicates that the model learned by P2E is indeed global, while the model learned by

Dreamer, which is task-oriented, fails to generalize to significantly di↵erent tasks.

4.5. Expected vs Retrospective Novelty

Does planning for expected novelty give rise to better exploration than

retrospective novelty?

We evaluate whether maximizing expected novelty is advantageous by comparing

an approach that maximizes expected novelty by estimating it with model-based

rollouts to a model-free approach that uses the likelihood ratio gradient estimator.

Our Plan2Explore agent is able to measure expected novelty by imagining future

states that were not visited yet. A model-free agent, in contrast, is only trained

on the states from the replay bu↵er, and only gets to see the novelty in retrospect,

after the state has been visited. Here, we evaluate the advantages of computing

expected versus retrospective novelty by comparing P2E to a corresponding model-

free agent Pathak et al. (2019). 14 shows the zero-shot performance of the expected

and retrospective computation strategies. Our agent achieves superior performance,

indicating that planning to explore is advantageous in our case.

To further support our hypothesis, we also show results of retrospective and expected

comparisons with prediction error objective in Figure 15. These results are consis-

tently show that expected is significantly better than retrospective exploration and

furthermore reinforce our hypothesis.

The case for training an exploration policy that tries to optimize for expected novelty

38

2 4

TrDining 6teSs 1e6

100

200

300

400

500

Ze
rR

-s
hR

t 3
er

fR
rP

Dn
ce

CheetDh 5un

DisDgreePent - (xSected (2urs) DisDgreePent - 5etrRsSective (3DthDk et.DO, 2019)

Figure 14: We compare P2E to a corresponding model-free agent Pathak et al. (2019)
that uses the disagreement objective. The model-free agent is only trained on already
visited states and thus optimizes the retrospective novelty. We adapt Pathak et al.
(2019) to zero-shot setting by training a model-based agent on the exploration data
collected by Pathak et al. (2019). We see that our agent that maximizes expected
novelty achieves superior performance.

1 2 3 4 5 6
Training 6teSs 1e6

50

100

150

200

250

5e
tu

rn
s

Cheetah 5un

ExSected 1Rvelty 5etrRsSective 1Rvelty

Figure 15: We compare a model-based agent that plans to explore to a model-free
agent that optimizes the retrospective novelty, namely the prediction error objective.
We evaluate the zero-shot performance of the retrospective approach by training a
model-based agent on the exploration data collected by the retrospective approach.
We see that the agent that maximizes expected novelty achieves superior performance.
This was run with a single seed only.

39

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

100

200

300

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

AcrRERW 6ZinguS

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

CarWSROH 6ZinguS

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

100

200

300

400

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

CarWSROH 6ZinguS 6SarsH

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

ChHHWah 5un

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

100

200

300

400

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

HRSSHr HRS

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

3HnduOuP 6ZinguS

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

5HachHr Easy

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

WaOkHr WaOk

2urs 5HWrRsSHcWivH 5HWrRsSHcWivH - 5x 5HWrRsSHcWivH - 15x

Figure 16: We compare the zero-shot performance of our method to a variant that
has a small imagination of horizon of 1, e↵ectively making it a ’reactive’ exploration
method. This simulates the performance di↵erence between optimizing for expected
novelty vs retrospective novelty. As is clearly observed, optimizing for expected nov-
elty vastly outperforms optimizing for retrospective novelty.

can further be made by playing around with the imagination horizon in training the

exploration policy. The relevant experiment is represented in Figure 16. Here, we

compare our method, which has an imagination horizon of 15, to a variant which has a

horizon of 1, e↵ectively not being able to plan for future novelty, therefore simulating

an approach that only optimizes for retrospective novelty in a one step rollout. For

the retrospective approaches, we have three ablations, where the experiment labeled

with 5x is one where we train the exploration policy on old data 5 times that of

the world model, and the experiment labeled with 15x is one where we train the

exploration policy on old data 15 times that of the world model. This is done so as

to give a stronger learning signal to the policy. But as is clearly observable, these

short horizon approaches vastly underperform. This once again supports the case for

optimizing for expected novelty.

40

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

100

200

300

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

AcrRERW 6ZingXS

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

CarWSROH 6ZingXS

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

100

200

300

400

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

CarWSROH 6ZingXS 6SarsH

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

ChHHWah 5Xn

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

100

200

300

400

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

HRSSHr HRS

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

3HndXOXP 6ZingXS

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

5HachHr (asy

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

800

ZH
rR

-s
hR

W 3
Hr

fR
rP

an
cH

WaOkHr WaOk

2Xrs 0AX (rHinfRrcH) 0AX (PRdHO grads)

Figure 17: We look at the zero-shot performance of our agent, as compared to the
MAX Baselines. We evaluate it against two di↵erent variants of MAX, where we
train the exploration policy by propagating gradients through the learnt world model,
and where we train it in a model-free way by using policy gradients. Our method
outperforms both the variants of MAX

4.6. Comparing with MAX

We specifically compare the zero-shot performance of our method as compared to

MAX (Shyam et al 2019). This is shown in Figure 17 We first see the performance

di↵erence when we change the generation of intrinsic rewards from Latent Disagree-

ment to the JRD metric as designed by MAX, given in Equation 2.12. However,

the key di↵erences between MAX and ours is that instead of using the full dynamics

model elements in the ensemble, which for us would be too expensive, we use the one

step prediction models as the ensemble, where we learn both the mean and variance

of the individual Gaussians distributions, as designed by MAX. We look into two

di↵erent variants of MAX. First, we train the exploration policy just like how we

train our exploration policy, by propagating gradients through the dynamics model.

This is labeled as MAX (model grads) in the plot. This is not how MAX trains its

policies, which uses a model-free approach using policy gradients. To simulate this as

41

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

100

200

300

400

5H
Wu

rn
s

AcrRERW 6winguS

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

200

400

600

800

5H
Wu

rn
s

CarWSROH 6winguS

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

800

5H
Wu

rn
s

CarWSROH 6winguS 6SarsH

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

800

5H
Wu

rn
s

ChHHWah 5un

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

5H
Wu

rn
s

+RSSHr +RS

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

800

5H
Wu

rn
s

3HnduOuP 6winguS

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

0

200

400

600

800

5H
Wu

rn
s

5HachHr (asy

0.00 0.25 0.50 0.75 1.00
7raining 6WHSs 1H7

200

400

600

800

1000

5H
Wu

rn
s

:aOkHr :aOk

2racOH (RnOy HxW) CRPER: 1*HxW+0.01*inW CRPER: 1*HxW+0.1*inW CRPER: 1*HxW+0.001*inW

Figure 18: We compare the performance of the supervised oracle with a supervised
approach that also has exploration bonuses. We perform ablations with the coe�cient
of the exploration bonus, and it is clear that the agent with our intrinsic reward as
a bonus with a coe�cient of 0.01 augments the supervised oracle well in tasks where
the oracle struggles

well, we train the exploration policy by using REINFORCE (Williams (1992)) and

optimize the exploration policy head ⇡�0 as

�
0
 �

0 + ↵E⇡[
t+HX

⌧=t

 ⌧r�0 log ⇡�0(a⌧ |s⌧)] (4.1)

where ⌧ = V�(s⌧) is the lambda-return value estimate. As can clearly be seen, our

method outperforms both the variants of MAX. It is however not clear if training

MAX policies with policy gradients is any better than training them with model

gradients. More experiments need to be made in this avenue.

4.7. Exploration Bonuses

While not being the focus of the method or this thesis, we also look into whether

we can use the intrinsic rewards as exploration bonuses to the extrinsic rewards. To

42

achieve this, we train our ensemble as usual, but we don’t have a separate policy or

value head for exploration. We simply generate the intrinsic rewards by using the

latent disagreement through the rollout in the imagination that the extrinsic task

policy head executes. We combine the final rewards to the policy head as some linear

combination of the intrinsic and the extrinsic rewards. This experiment is shown in

Figure 18. We vary the coe�cient of the intrinsic reward and see the performance

di↵erence. It appears that with a intrinsic coe�cient of 0.01, our method augments

the supervised oracle well. The coe�cient of 0.1 seems to be too large, meaning the

policy can’t decide what to optimize between the intrinsic and extrinsic objectives,

and a coe�cient of 0.001 seems to be too little, meaning the policy is simply opti-

mizing only for the extrinsic rewards. However, the gains here by using exploration

bonuses are not high. This might mean that these tasks are not challenging explo-

ration problems, and that since Dreamer already solves most of these tasks, it really

isn’t a necessity to give a strategic exploration bonus, although in the tasks where

Dreamer struggles, like Hopper Hop, our exploration bonus seems to have improved

the performance.

43

5. Conclusions

We presented Plan2Explore, a task-agnostic reinforcement learning method that learns

a global model of its environment through unsupervised exploration and uses this

model to solve tasks in a zero-shot or few-shot manner. We derived connections

of our method to information gain, a principled objective for Bayesian exploration.

Building on recent work on learning dynamics models and behaviors from images,

we constructed a model-based zero-shot reinforcement learning agent that was able

to achieve state-of-the-art zero-shot task performance on a range of DeepMind con-

trol suite tasks. Moreover, the agent’s zero-shot performance was competitive to

Dreamer, a state-of-the-art supervised reinforcement learning agent on some tasks,

with the few-shot performance eventually matching or outperforming the supervised

agent. By presenting a method that is able to learn e↵ective behavior for many dif-

ferent tasks in a scalable and data-e�cient manner, we hope this work constitutes a

step towards building scalable real-world learning systems that are able to interact

with their environment and solve complex real-world tasks.

44

BIBLIOGRAPHY

J. Achiam and S. Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. arXiv:1703.01732, 2017.

B. Amos, L. Dinh, S. Cabi, T. Rothörl, A. Muldal, T. Erez, Y. Tassa, N. de Freitas,
and M. Denil. Learning awareness models. In International Conference on Learning

Representations, 2018.

E. Banijamali, R. Shu, M. Ghavamzadeh, H. Bui, and A. Ghodsi. Robust locally-
linear controllable embedding. arXiv preprint arXiv:1710.05373, 2017.

M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos.
Unifying count-based exploration and intrinsic motivation. In NIPS, 2016.

Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018a.

Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018b.

Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Large-scale
study of curiosity-driven learning. ICLR, 2019.

K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. arXiv preprint

arXiv:1805.12114, 2018a.

K. Chua, R. McAllister, R. Calandra, and S. Levine. Unsupervised exploration with
deep model-based reinforcement learning. 2018b.

M. O. Du↵ and A. Barto. Optimal Learning: Computational procedures for Bayes-

adaptive Markov decision processes. PhD thesis, University of Massachusetts at
Amherst, 2002.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning
skills without a reward function. arXiv:1802.06070, 2018.

Y. Gal. Uncertainty in deep learning. University of Cambridge, 1:3, 2016.

D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: O↵-policy maxi-

45

mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint

arXiv:1801.01290, 2018.

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learn-
ing latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors
by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

M. Hena↵, A. Canziani, and Y. LeCun. Model-predictive policy learning with uncer-
tainty regularization for driving in dense tra�c. ICLR, 2019.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K. Czechowski,
D. Erhan, C. Finn, P. Kozakowski, S. Levine, et al. Model-based reinforcement
learning for atari. arXiv preprint arXiv:1903.00374, 2019.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learn-
ing. In ICML, volume 2, pages 267–274, 2002.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

A. S. Klyubin, D. Polani, and C. L. Nehaniv. Empowerment: A universal agent-
centric measure of control. In Evolutionary Computation, 2005.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information

Processing Systems, pages 6402–6413, 2017.

J. Lehman and K. O. Stanley. Evolving a diversity of virtual creatures through
novelty search and local competition. In Proceedings of the 13th annual conference

on Genetic and evolutionary computation, 2011.

S. Levine. Cs 285 at uc berkeley, deep reinforcement learning.
http://rail.eecs.berkeley.edu/deeprlcourse/, 2019.

D. V. Lindley. On a measure of the information provided by an experiment. The

Annals of Mathematical Statistics, pages 986–1005, 1956.

M. Lopes, T. Lang, M. Toussaint, and P.-Y. Oudeyer. Exploration in model-based
reinforcement learning by empirically estimating learning progress. In NIPS, 2012.

46

K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch. Plan online,
learn o✏ine: E�cient learning and exploration via model-based control. arXiv

preprint arXiv:1811.01848, 2018.

D. J. MacKay. Information-based objective functions for active data selection. Neural
computation, 4(4):590–604, 1992.

A. K. McCallumzy and K. Nigamy. Employing em and pool-based active learning for
text classification. In Proc. International Conference on Machine Learning (ICML),
pages 359–367. Citeseer, 1998.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
ICML, 2016.

I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped
dqn. In NIPS, 2016.

I. Osband, J. Aslanides, and A. Cassirer. Randomized prior functions for deep rein-
forcement learning. In Advances in Neural Information Processing Systems, pages
8617–8629, 2018.

G. Ostrovski, M. G. Bellemare, A. v. d. Oord, and R. Munos. Count-based exploration
with neural density models. ICML, 2018.

P.-Y. Oudeyer and F. Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, 2009.

P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner. Intrinsic motivation systems for au-
tonomous mental development. Evolutionary Computation, 2007.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by
self-supervised prediction. In ICML, 2017.

D. Pathak, D. Gandhi, and A. Gupta. Self-supervised exploration via disagreement.
ICML, 2019.

P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to discrete
bayesian reinforcement learning. In ICML, 2006.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. arXiv preprint arXiv:1401.4082,
2014.

47

A. G. Richards. Robust constrained model predictive control. PhD thesis, Mas-
sachusetts Institute of Technology, 2005.

R. Y. Rubinstein. Optimization of computer simulation models with rare events.
European Journal of Operational Research, 99(1):89–112, 1997.

J. Schmidhuber. Curious model-building control systems. In Neural Networks, 1991.

1991 IEEE International Joint Conference on, pages 1458–1463. IEEE, 1991a.

J. Schmidhuber. A possibility for implementing curiosity and boredom in model-
building neural controllers. In From animals to animats: Proceedings of the first

international conference on simulation of adaptive behavior, 1991b.

J. Schulman, N. Heess, T. Weber, and P. Abbeel. Gradient estimation using stochastic
computation graphs. In NIPS, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

H. Seung, M. Opper, and H. Sompolinsky. Query by committee. COLT, 1992.

P. Shyam, W. Jaśkowski, and F. Gomez. Model-Based Active Exploration. In ICML,
2019.

A. Strehl and M. Littman. An analysis of model-based interval estimation for markov
decision processes. Journal of Computer and System Sciences, 2008.

Y. Sun, F. Gomez, and J. Schmidhuber. Planning to be surprised: Optimal bayesian
exploration in dynamic environments. In AGI, 2011.

R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting.
ACM SIGART Bulletin, 2(4):160–163, 1991.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Abdol-
maleki, J. Merel, A. Lefrancq, T. Lillicrap, and M. Riedmiller. DeepMind control
suite. Technical report, DeepMind, Jan. 2018. URL https://arxiv.org/abs/
1801.00690.

M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. In NIPS, 2015.

T. Weber, S. Racanière, D. P. Reichert, L. Buesing, A. Guez, D. J. Rezende, A. P.
Badia, O. Vinyals, N. Heess, Y. Li, et al. Imagination-augmented agents for deep
reinforcement learning. arXiv preprint arXiv:1707.06203, 2017.

48

R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

49

